
1

Professional Deno Applications

Bruno Bernardino

Table of Contents

1 Introduction to Deno and TypeScript for Experienced Engi-
neers 4
Introduction to Deno: Why and How It’s Different from Node.js 6
Key Deno Features: Enhanced Security, Built - in Utilities, and

Native TypeScript Support 7
TypeScript Primer for Experienced Engineers: Key Concepts and

Language Features . 9
Comparing TypeScript with JavaScript: Advantages and Chal-

lenges for Deno Development 12
Deno Runtime API: File System, Network, and Process Management 14
Essential Deno Tools: deno fmt, deno lint, and deno doc 15
Migrating from Node.js to Deno: Considerations and Strategies

for Transitioning Existing Projects 17

2 Setting Up a Deno Development Environment 19
Installing Deno: Requirements and Prerequisites 21
Configuring Deno: Setting Environment Variables and Updating

PATH . 22
Choosing your IDE and Integrating with Deno: Visual Studio

Code, JetBrains WebStorm, Sublime Text 24
Setting up TypeScript Development Environment: tsconfig.json

and deno.tsconfig.json . 25
Essential Deno Development Tools: denon, deno installer, deno doc 27
Using Deno Standard Library in your Projects 28
Configuring Deno with TypeScript: Compiler options and Import

Maps . 30
Debugging Deno Applications: Remote Debugging and VSCode

Configuration . 32
Establishing an Efficient Workflow: Hot Reloading, Linting, and

Formatting . 33
Integrating Deno with CI/CD Tools and Version control Systems 35

3

4 TABLE OF CONTENTS

3 Core Deno Modules and Utilities 38
Overview of Core Deno Modules and Utilities 40
Using the Deno Standard Library: Introduction and Key Functions 42
File and Directory Operations with ‘Deno‘ Global Object and

Standard Library Functions 44
Networking: Interacting with HTTP and TCP in Deno 45
Dealing with Processes and Signals: The ‘Deno.run‘ and ‘Deno.signal‘

APIs . 47
Managing Permissions and Secure Coding in Core Deno Modules 49
Implementing Custom Streams and Transformers via Deno Reader

and Writer Interfaces . 51
Timers, Delays, and Asynchronous Utilities in Deno 53
Unicode and Text Encoding Handling in Deno Applications . . . 55
Environment Variables and Configuration Management in Deno

Projects . 56
Utilizing Web APIs Directly in Deno: Fetch, Crypto, and More . 58

4 Deno Security and Permissions Handling 61
Introduction to Deno Security and Permission Model 63
Understanding the Basic Permission Flags in Deno 64
Granular Permission Control with Allow - List and Deny - List . 66
Best Practices for Managing Permissions in Deno Applications . 68
Securely Accessing External Resources in Deno Projects 70
Integration of Third - Party Modules with Deno Security Model 72
Advanced Deno Security Features and Techniques 74

5 Writing and Publishing Deno Modules 76
Introduction to Writing Deno Modules 78
Structuring a Deno Module: Files and Directory Organization . . 79
TypeScript Features for Module Development: Exporting Types

and Interfaces . 81
Dependency Management: Importing and Exporting Deno Modules 82
Creating a README and Documentation for Your Deno Module 84
Writing Tests for Your Deno Module: Unit and Integration Tests 86
Versioning and Release Management for Deno Modules 87
Publishing Your Deno Module on deno.land/x Registry 89
Deno Module Maintenance and Continuous Integration: GitHub

Actions . 91
Promoting and Growing Your Deno Module: Community Engage-

ment and Contribution Guidelines 93

6 Advanced TypeScript Features for Deno 95
Union Types and Discriminated Unions in Deno Applications . . 97
Advanced Utility Types for Deno Projects 99

TABLE OF CONTENTS 5

Intersection Types and Merging for Configurations and Dependency
Injection . 100

Novel TypeScript 4.x Features for Deno Development 102
Advanced Type Guards, Assertion Functions, and Custom Type

Guards in Deno . 104
Mapping Types and Indexed Access in Large Deno Applications 106
Conditional Types and Inference for Optimizing Deno Function

Overloads . 108

7 Architecting Deno Applications: Project Structure and
Design Patterns 111
Introduction to Architecting Deno Applications 113
Project Structure Best Practices for Deno Applications 115
Modular Design Patterns in Deno 116
Implementing Custom Middleware for Deno Applications 119
Dependency Injection and Inversion of Control in Deno 121
Deno Specific Design Patterns: Factories, Adapters, and Decorators123
Application Configuration and Environment Management with Deno125
Error Handling and Logging Strategies in Deno Applications . . 127
Utilizing TypeScript Decorators for Clean and Maintainable Deno

Code . 129
Integrating Design Patterns: A Real - World Deno Application

Example . 131

8 Creating a REST API with Deno and TypeScript 133
Introduction to REST APIs in Deno and TypeScript Context . . 135
Setting Up a REST API Project: Dependencies and Initialization 137
Defining API Routes: GET, POST, PUT, DELETE 139
Creating Controllers and Middleware for API Endpoints 140
Utilizing Deno Standard Libraries for Handling Requests and

Responses . 142
Integrating Query Parameters and Route Parameters in API End-

points . 145
Validating API Requests with TypeScript Type Guards and Interfaces146
Implementing Error Handling and HTTP Status Codes 148
Authentication and Authorization in REST API using Deno and

TypeScript . 149
Enabling Cross - Origin Resource Sharing (CORS) in Deno REST

API . 151
Testing REST API Endpoints: Tools and Best Practices 153

9 Building GraphQL APIs using Deno and TypeScript 155
Introduction to GraphQL and Deno: Advantages and Use Cases 157
Installing and Configuring Required Deno Libraries for GraphQL 159

6 TABLE OF CONTENTS

Creating a GraphQL Schema with TypeScript: Type Definitions
and Resolvers . 160

GraphQL Query Basics: Fetching Data from Deno API 162
GraphQL Mutation Basics: Creating, Updating, and Deleting Data163
Implementing Pagination, Filtering, and Sorting in GraphQL API 165
Utilizing Advanced GraphQL Features: Enums, Interfaces, and

Unions . 167
GraphQL Subscriptions: Real - time Data with Deno and WebSockets169
Error Handling and Validation in a Deno GraphQL API 171
Securing Deno GraphQL API: Authentication and Authorization

Patterns . 173
Performance Optimization: Caching and DataLoader in Deno

GraphQL . 175
Testing and Debugging GraphQL APIs with Deno and TypeScript 177

10 Deno, TypeScript, and WebSockets: Real - time Applica-
tions 180
Introduction to WebSockets and Real - time Applications 182
Setting Up a Deno WebSocket Server with TypeScript 185
Client - side WebSocket Handling with TypeScript 187
WebSocket Communication: Sending and Receiving Messages . . 189
Deno and TypeScript Code Organization for Socket - based Appli-

cations . 191
Real - time Application Use Cases and Design Patterns 193
Securing WebSocket Connections in Deno Applications 195
Performance Considerations and Best Practices for WebSocket

Applications . 197
Building a Real - time Chat Application with Deno, TypeScript,

and WebSockets . 199
Leveraging Third - Party WebSocket Libraries in Deno Projects . 201

11 Utilizing Third - Party Modules in Deno Projects 204
Overview and Importance of Third - Party Modules in Deno Projects206
Discovering and Evaluating Third - Party Modules 208
Importing and Managing Third - Party Modules in Deno Projects 210
Integrating Third - Party Modules with the Deno Application

Architecture . 212
Addressing Performance and Security Concerns with Third - Party

Modules . 214
Commonly Used Third - Party Modules in Deno Applications . . 216
Updating and Maintaining Third - Party Modules in Deno Projects217
Troubleshooting Common Issues with Third - Party Modules in

Deno . 219

TABLE OF CONTENTS 7

12 Testing Strategies, Libraries, and Best Practices for Deno
Applications 221
Introduction to Testing in Deno Applications 223
Built - in Deno Testing Framework and Assertions 225
Organizing and Naming Conventions for Test Files 227
Writing Unit Tests for Deno Modules with TypeScript 228
Mocking and Stubbing Dependencies in Deno Tests 230
Leveraging Third - Party Testing Libraries for Advanced Testing 232
Implementing Integration Tests for Deno Applications 234
Test - Driven Development (TDD) for Deno Applications with

TypeScript . 236
Continuous Integration (CI) and Automated Testing with Deno . 238
Best Practices and Recommendations for Testing Deno Applications240

13 Deploying Deno Applications on Cloud Platforms 242
Overview of Cloud Deployments for Deno Applications 244
Choosing the Right Cloud Platform for Your Deno Application . 245
Preparing a Deno Application for Cloud Deployment 247
Deploying a Deno Application on Amazon Web Services (AWS) . 248
Deploying a Deno Application on Microsoft Azure 250
Deploying a Deno Application on Google Cloud Platform (GCP) 253
Deploying a Deno Application on Heroku 255
Continuous Integration and Continuous Deployment (CI/CD) Prac-

tices for Deno Applications 256
Monitoring and Logging for Deno Applications in the Cloud . . . 258
Scaling Deno Applications on Cloud Platforms 259
Security Best Practices for Deno Applications on Cloud Platforms 261
Cost Optimization Strategies for Deploying Deno Applications on

Cloud Platforms . 263

14 Deno Ecosystem, Tooling, and Future Developments in Deno
and TypeScript 266
Overview of Deno Ecosystem and Tooling 268
Essential Tools for Developing Deno Applications 270
Debugging Deno Applications . 271
Continuous Integration (CI) and Continuous Deployment (CD) for

Deno Projects . 273
Adopting Deno in Large - scale Projects 274
Interacting with Databases in Deno Applications 276
Machine Learning and Artificial Intelligence (AI) with Deno and

TypeScript . 278
Performance Analysis and Optimization of Deno Applications . . 280
Future Developments in Deno and TypeScript 282

Chapter 1

Introduction to Deno and
TypeScript for
Experienced Engineers

As the next generation of server - side development begins to unfold, experi-
enced engineers are constantly on the lookout for new tools and platforms
that can help them build more powerful, performant, and secure applications.
One such tool that has been making a noteworthy impact is Deno, a modern
runtime for JavaScript and TypeScript designed to address the pain points
and challenges that accompanied its predecessor, Node.js.

For engineers with pre - existing experience, the prospect of adopting
Deno and TypeScript might initially seem daunting, considering that they
already possess a deep understanding of Node.js and JavaScript. However,
the plethora of crucial features and enhancements that Deno offers, coupled
with the type safety and expressiveness of TypeScript, truly underscores the
potential for delivering innovative solutions for modern web development
needs.

While JavaScript has been the de facto language for building server -
side applications using Node.js, it suffers from inherent limitations, such as
the lack of static typing, which hampers productivity due to ambiguities
and reduced code maintainability. TypeScript, on the other hand, addresses
these limitations by adding optional static types to JavaScript, thereby
providing better tooling support, improved code quality and readability,
and built - in error checking. The union of Deno and TypeScript provides

8

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

9

a unique opportunity for engineers to embrace the advantages of optional
static typing, as Deno supports TypeScript natively, without any need for
additional tooling or transpilation.

Moving beyond the core runtime and language capabilities, the primary
causes of discontent among developers in the Node.js ecosystem have been
security concerns, inadequacies in built - in utilities, and convolutions in
the dependency management system. Deno presents itself as a remedy for
these issues, offering a more secure foundation for building applications by
providing a comprehensive permission model, built - in utilities, as well as a
more modern and secure approach to handling dependencies.

Deno enforces strict permissions by default, compelling developers to
grant explicit access to resources such as file system, networking, or environ-
ment variables. This constraint instills a discipline of writing secure code
and reduces the surface area available for exploits.

Additionally, Deno augments its built-in utilities by providing a standard
library that incorporates well - designed and tested modules, eliminating
the need to rely on a multitude of third - party packages. With its focus on
web standards, Deno further elevates its appeal by supporting a plethora of
web APIs, such as Fetch and Crypto, which reduces the learning curve for
developers accustomed to front - end development.

One of the most befuddling aspects of working with Node.js has been
the intricate dependency management system and the resulting clutter in
node modules. Deno rectifies this issue by employing a URL-based approach
inspired by web standards, allowing developers to import modules directly
from URLs or local file paths. This simplification removes the restrictions
imposed by the traditional npm - style ecosystem and paves the way for a
more efficient and maintainable development process.

As experienced engineers venture into the world of Deno and TypeScript,
they may find themselves feeling like explorers setting foot on untrodden
terrain, yet armed with the wisdom of their previous expedition with Node.js
and JavaScript. This synthesis of knowledge from the past and the anticipa-
tion of the promise that lies ahead is precisely what fuels their enthusiasm
to explore new horizons and surmount what once seemed insurmountable
challenges.

Undoubtedly, the adoption of Deno and TypeScript requires an invest-
ment in relearning and adaptation by experienced engineers. The benefits

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

10

they offer in terms of expressiveness, flexibility, and overall enhancement of
web applications make the journey more than worthwhile. The initiation of
this journey signals the dawning of a new era in server - side development,
one that is forged by the determined spirit of experienced engineers who
embrace the power of Deno and TypeScript to shape the future of web
applications.

Introduction to Deno: Why and How It’s Different from
Node.js

In recent years, developers have witnessed a paradigm shift in the field of
web development. The creators of JavaScript, along with the community,
have strived to enhance the performance, adaptability, and scalability of
web applications. This pursuit of innovation has paved the way for Deno
- a vibrant newcomer designed to evolve the JavaScript ecosystem and
provide enhanced ergonomics, robustness, and flexibility in the development
of modern web applications.

Deno is a runtime environment for JavaScript and TypeScript, created
by none other than Ryan Dahl, the original creator of Node.js. It aims
to fix the shortcomings and design flaws that plagued Node.js, offering
developers an innovative solution for building scalable and secure server
- side applications. While Node.js evolved immensely over the years and
served as a cornerstone in the world of web development, its foundational
architecture and design choices held it back from reaching its full potential.
This realization led to the birth of Deno - a platform that embodies the
lessons learned from Node.js and embraces the future of web development -
with unshaken gusto.

One of the key distinctions between Deno and Node.js lies in their
approach to security. By default, Deno executes programs in a sandbox
environment, denying access to the file system, network, and environment
variables unless explicitly granted by the developer. This fine - grained
permission model reduces the risk of security vulnerabilities and enhances
the overall safety of web applications. In contrast, Node.js allows for
unrestricted access to the system resources, increasing the surface area for
potential security breaches and exploitation of unauthorized permissions.

Another noteworthy feature of Deno is its first - class support for Type-

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

11

Script. In the realm of Node.js, using TypeScript requires transpiling the
code to JavaScript before execution - a cumbersome process that ultimately
hinders development velocity. Deno eradicates this bottleneck by providing
native TypeScript support, enabling developers to write and run TypeScript
code without the need for an additional compiler. Furthermore, Deno sim-
plifies dependency management by embracing the built - in module system
of the browser, forgoing the problematic and convoluted use of package
managers like npm.

Deno also bestows developers with a treasure trove of built - in utilities,
expanding the capabilities of web applications and streamlining the devel-
opment process while protecting code integrity. Deno equips developers
with robust tools such as linting, formatting, and bundling, all tailored to
improve development workflows. With its comprehensive standard library,
Deno empowers developers to build feature - rich applications without the
reliance on third - party libraries. This approach is in stark contrast to
the Node.js ecosystem, where developers must traverse the depths of npm
packages to furnish their applications with desired functionality.

As we embark on this journey to explore the intricacies of Deno, it is
essential to remember that the underlying essence behind Deno’s existence is
not to replace Node.js, but to shape a more secure, efficient, and developer -
friendly environment that opens new doors of possibilities. With a sharpened
focus on the future of web development, Deno beckons us to embrace the
changes lying on the horizon, urging us to broaden our perspective and
delve into the untrodden realms of ingenuity and invention.

Key Deno Features: Enhanced Security, Built - in Utili-
ties, and Native TypeScript Support

Firstly, let’s discuss one of the most critical aspects of any modern software
system: security. Deno boasts a sound security infrastructure, purposefully
designed to prevent vulnerabilities from creeping into projects. Unlike
Node.js, which grants all modules access to critical system resources, such
as file I/O and network connections, Deno takes a more restrictive approach,
implementing a permission-based system. Permissions are granted explicitly
by a user when running a Deno script, ensuring that scripts only access the
resources they need, and nothing more. This approach minimizes the risk

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

12

of accidentally exposing sensitive information or executing harmful code,
allowing developers to work with greater confidence.

To illustrate Deno’s security features, consider running a Deno script
that fetches data from a remote API. To allow network connections, a user
must add the ‘ - - allow - net‘ flag when executing the script:

“‘bash $ deno run - - allow - net my script.ts “‘
With this granular control in place, it’s clear that Deno sets a high

standard for security in its runtime environment, leading to safer and more
secure applications.

Next, let’s examine the built - in utilities that bring a core competitive
advantage to Deno. One often - cited pain point of Node.js is the reliance
on external tools such as npm, Yarn, and npx for package management.
Deno departs from this paradigm by shipping with a collection of essential
utilities, effectively streamlining the development process. Among these
utilities are the Deno package manager and tools to format, lint, and test
code.

Deno simplifies dependency management by eliminating ”node modules”
and package.json files, as dependencies are imported directly via URLs. The
Deno runtime fetches, caches, and manages these dependencies automatically,
removing the need to juggle multiple tools during development.

Deno also incorporates tools such as ”deno fmt,” enabling developers
to format their code automatically to adhere to a consistent style guide.
Linting tools like ”deno lint” allow for code validation and spotting potential
pitfalls during development. As a cherry on top, Deno even includes a simple
yet powerful built - in testing framework, invoked by running ”deno test,”
sparing developers the need to rely on external libraries for such crucial
development tasks.

Lastly, another exciting aspect of Deno lies in its first - class support for
TypeScript, a typed superset of JavaScript that has gained considerable
popularity. TypeScript provides benefits such as improved code maintain-
ability, better development tooling, refactoring capabilities, and a gentler
learning curve for developers at all experience levels. While TypeScript can
be used alongside Node.js, doing so requires a separate setup and additional
tooling, such as a transpiler and build step.

In Deno, TypeScript support is baked into the runtime, allowing de-
velopers to write TypeScript code without setting up dedicated build and

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

13

transpilation tools. This feature eliminates the cumbersome configurations
often associated with TypeScript projects in Node.js and encourages develop-
ers to take advantage of TypeScript’s potent language features from the get
- go. More seamless and natural than ever, this native TypeScript support
in Deno is widely regarded as a game - changer, guiding an accomplished
ecosystem towards a performance - driven, type - safe future.

In summary, Deno is an ambitious JavaScript runtime striving to right
the wrongs of its predecessor. With hardened security features, streamlined
utilities, and built - in TypeScript support, Ryan Dahl and the Deno team
have created a runtime that can truly stand on its own in a world dominated
by Node.js. As developers explore the possibilities that Deno presents and
begin to engage with it on a deeper level, an intriguing question emerges:
What might the future hold for Deno, and where will it fit in the constantly
evolving landscape of web development? One thing is for sure; its innovation
and forward - thinking approach have captured the interest of many in the
community, proving that Deno’s journey has only just begun.

TypeScript Primer for Experienced Engineers: Key Con-
cepts and Language Features

At its core, TypeScript is JavaScript, but adorned with a strong, static type
system. This type system is the foundation upon which TypeScript provides
a range of beneficial features, such as type - checking, inferred typing, and
expressive type annotations. TypeScript’s primary goal is to provide a type -
safe layer on top of JavaScript, allowing the developer to catch type - related
errors at compile - time, rather than during runtime.

To gain a deft understanding of TypeScript’s true capabilities, let us
explore the language through examples. First, consider a simple JavaScript
function that adds two numbers:

“‘javascript function add(a, b) { return a + b; }
console.log(add(1, 2)); // 3 “‘
This function is simple and works as expected, but let us deliberately

cause a pitfall:
“‘javascript console.log(add(1, ”2”)); // ”12” - A string concatenation

instead of a numeric addition “‘
We unintentionally invoked the function with a string argument, ”2”,

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

14

resulting in a string concatenation rather than a numeric addition. This kind
of issue might go unnoticed and result in a hard - to - trace bug. TypeScript
comes to the rescue by allowing the developer to assert types for both the
parameters and the return type:

“‘typescript function add(a: number, b: number): number { return a +
b; }

console.log(add(1, 2)); // 3 console.log(add(1, ”2”)); // Compilation
error “‘

Now, attempting to invoke the ‘add‘ function with a string argument
results in a compilation error. The developer is informed of the issue before
the code ever executes. This elegant TypeScript addition to the function
signature ensures that only numeric inputs are allowed.

In TypeScript, interfaces serve as blueprints for objects. This structural
contract allows the developer to define the expected structure of an object
while offering the flexibility of having multiple implementations. For instance,
the following interface describes a point in two - dimensional space:

“‘typescript interface Point { x: number; y: number; } “‘
With this interface defined, TypeScript ensures that any object passed

as a ‘Point‘ conforms to the declared structure:
“‘typescript function calculateDistance(a: Point, b: Point): number {

return Math.sqrt(Math.pow(b.x - a.x, 2) + Math.pow(b.y - a.y, 2)); } “‘
The ‘calculateDistance‘ function can now be invoked with any object

that adheres to the ‘Point‘ interface, without the need to create a class or
specific constructor for the inputs. This simple declarative model opens up
new avenues for creating modular and reusable code.

TypeScript encourages further extensibility by supporting union types
and the concept of ”type narrowing.” Union types allow a variable to be
one of several types. In combination with type narrowing, TypeScript can
intelligently determine the specific type of a variable at a given point in the
code, thereby allowing for safer type manipulation. For example, consider
the following function:

“‘typescript type Shape = Circle Square;
function computeArea(shape: Shape): number { if (’radius’ in shape) { //

shape is inferred to be a Circle return Math.PI * shape.radius * shape.radius;
} else { // shape is inferred to be a Square return shape.sideLength *
shape.sideLength; } } “‘

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

15

Here, ‘Shape‘ is a union type that can either be a ‘Circle‘ or a ‘Square‘.
When checking for the presence of the ‘radius‘ property, TypeScript can
infer that the ‘shape‘ parameter is of type ‘Circle‘, making it safe to access
the ‘radius‘ property. This powerful mechanism enables versatile and safe
manipulation of types based on their characteristics.

TypeScript also comprises an extensive arsenal of utility types that can
cater to nuanced scenarios when working with advanced typing require-
ments. Utility types such as ‘Partial‘, ‘Readonly‘, and ‘ReturnType‘ can
address various scenarios when dealing with type transformation and object
manipulation. For instance, the ‘ReturnType‘ utility type can be used to
extract the return type of a function as a standalone type:

“‘typescript function greet(): string { return ”Hello, TypeScript!”; }
type Greeting = ReturnType<typeof greet=””>; // Greeting is inferred

to be of type ’string’ “‘
Lastly, a word on Decorators - a powerful addition to TypeScript’s

language features. Decorators provide a way to add metadata or modify
classes, properties, methods, and parameters in a readable and expressive
syntax. For example, a simple performance tracing decorator could be
created using the following code snippet:

“‘typescript function trace(target: Object, propertyKey: string, descrip-
tor: PropertyDescriptor): void { const originalFunc = descriptor.value;

descriptor.value = function (args: any[]) { console.time(propertyKey);
const result = originalFunc.apply(this, args); console.timeEnd(propertyKey);
return result; }; }

class Calculator { @trace public add(a: number, b: number): number {
// Simulate heavy computation for (let i = 0; i < 1e6; i++); return a +
b; } } “‘

In this example, the ‘@trace‘ decorator enhances the ‘add‘ method of
the ‘Calculator‘ class by measuring its execution time without altering the
original method implementation.

In summary, TypeScript provides an expressive type system, enabling
type - sensitive development and improved code safety, while maintaining
compatibility with JavaScript’s dynamic nature. Through advanced lan-
guage features such as union types, utility types, and decorators, TypeScript
allows the developer to write maintainable and robust code, adequately
equipped to deal with the web application landscape’s ever - evolving de-

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

16

mands.
As we enter the realm of Deno - a new runtime environment faithfully

accompanied by TypeScript - we will further explore the symbiotic rela-
tionship between Deno and TypeScript, and examine how concepts such as
asynchronous programming, file system access, and network communication
can benefit from TypeScript’s power and flexibility.</typeof>

Comparing TypeScript with JavaScript: Advantages and
Challenges for Deno Development

TypeScript, a strict superset of JavaScript, extends the original language
with optional static types, boasting strong typing capabilities that enable
compilers and development tools to offer improved assistance. This feature
is particularly valuable in Deno development since it can catch common
typing errors that often result in runtime exceptions in JavaScript. Thus,
incorporating TypeScript into Deno projects can lead to more robust and
error - free code.

Another advantage of using TypeScript in Deno development is the
expressiveness it brings to the table. By enabling developers to provide more
accurate type information, TypeScript can make code more self-documenting
and easier to understand. This not only facilities the reading of code written
by others but also proves beneficial during software maintenance, when
tracking down bugs or refactoring the codebase becomes crucial.

Furthermore, TypeScript’s full - featured static type system allows for
powerful type inference and advanced typing constructs, such as interfaces,
generics, and mapped types. These constructs enable developers to create
precise and flexible abstractions, improving the internal consistency of
their code. Consequently, this fosters a more maintainable and extensible
codebase - an essential factor to consider when building large, complex Deno
applications.

One of the major challenges when choosing TypeScript over JavaScript
for Deno development is the need to continuously transpile TypeScript
code into JavaScript to ensure compatibility with the runtime. However,
Deno addresses this issue by including a built - in TypeScript compiler,
streamlining the development process and removing the necessity for external
transpilation tools. Additionally, Deno automatically caches the compiled

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

17

output, thereby reducing the compilation time for subsequent executions of
the script.

While TypeScript offers numerous advantages in Deno development, some
challenges commonly arise from the language’s learning curve. TypeScript
introduces a whole new set of concepts, syntax, and semantics to JavaScript
developers, who must then adapt to these new paradigms. To fully harness
the power of TypeScript, developers must dedicate time and effort to explore
the nuances of the language and learn how to apply its features effectively.

Another challenge when working with TypeScript in Deno comes from
the dependency on third - party libraries or modules. Often, these libraries
are written in JavaScript and do not provide TypeScript type definitions
or typings, making it challenging to effectively synchronize and integrate
them within a TypeScript codebase. To tackle this issue, the TypeScript
community has created the DefinitelyTyped project, which contains type
definitions for popular JavaScript libraries. Nonetheless, developers might
still face situations where they need to write custom type definitions for
third - party modules.

In summary, TypeScript enriches Deno development, offering a slew
of advantageous features, such as strict static typing, expressiveness, and
powerful type inference. While it entails some challenges, primarily its
learning curve and dependency management, these obstacles are steadily
being addressed by both the TypeScript and Deno communities. With
an increasing number of developers adopting TypeScript in Deno projects,
we can expect enhanced tooling, resources, and best practices to emerge,
further solidifying the TypeScript - Deno partnership.

As we journey further into the world of Deno and TypeScript, it is crucial
to understand the profound influence of TypeScript on the Deno ecosystem
and the critical role it plays in enhancing the overall developer experience.
Equipped with this knowledge, let us embark on an exploration of the
extensive Deno Runtime API, uncovering the powerful capabilities it offers
in conjunction with TypeScript in orchestrating file systems, networking,
and process management.

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

18

Deno Runtime API: File System, Network, and Process
Management

The Deno runtime is the foundation on which we build our applications.
Deno’s underlying design philosophy has made it a developer’s delight,
effectively offering an optimal environment for JavaScript, TypeScript, and
Web API developers. An essential aspect of this environment is the Deno
Runtime API, which allows us to leverage the power of modern JavaScript
technology while making it straightforward to work with the file system,
networking, and processes.

As developers, it’s crucial we understand and navigate the Deno Runtime
API seamlessly. To achieve this, let us dive deep into its primary compo-
nents: file systems, networking, and process management. In exploring the
capabilities and functions within each category, we’ll acquire a solid under-
standing of how to build future applications utilizing the Deno Runtime
API efficiently.

The Deno File System API offers a comprehensive suite of functions
that enable us to work with paths, directories, and files. From reading and
writing files to creating and removing directories, these API calls make it
easy and intuitive to interact with the file system of the system our Deno
application runs on. By taking this approach, Deno mitigates the need for
additional packages, focusing on a lean and efficient file system API.

An example of the file system API in action is when we read a file’s
content using ‘Deno.readTextFile()‘. This async function reads the file
content as a UTF - 8 text string, removing the need for manually specifying
encodings or dealing with Node.js - like buffers.

In the world of networking, Deno provides an array of tools that al-
low us to create web servers, interact with APIs, establish low - level
HTTP/TCP/UDP connections, and manage web sockets. With these
capabilities in place, we can develop network - centric applications using
Deno’s Runtime API that are as powerful as their counterparts in Node.js
or other ecosystems.

For instance, creating a simple, ‘Hello World‘ HTTP web server using the
Deno Runtime API can be done in just a few lines of code. By leveraging
‘Deno.serve()‘, we no longer require third - party libraries to create and
manage the server.

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

19

The process management aspect of the Deno Runtime API encompasses a
wealth of functionality to interact with and manage subprocesses, signals, or
permissions in our applications. One such function is the ‘Deno.run()‘ API,
which enables us to spawn new processes and execute external programs.

Take the popular ‘cat‘ command in Unix - based systems as an example.
By using ‘Deno.run()‘, we can replicate the command to concatenate files
and output their content as follows:

“‘ const process = Deno.run({ cmd: [”cat”, ”file1.txt”, ”file2.txt”], });
await process.status(); process.close(); “‘
As we can see, Deno’s process management functions provide a clear and

familiar API alongside a simple permissions system that’s easy to use and
maintain - a marked improvement over the convoluted and clunky nature of
similar APIs in Node.js.

The Deno Runtime API blends file system, networking, and process
management in an elegant and easily consumable fashion. In mastering the
various capabilities of this API, we have the power and flexibility to develop
diverse applications with a comprehensive set of functionalities.

As we continue to delve into Deno’s features, we find ourselves growing
more adept at working with TypeScript in conjunction with the Deno -
specific APIs. We then turn to explore how these APIs go beyond the
fundamentals and extend into more advanced territories. The ever - evolving
landscape of Deno paves the way for development that marries modern web
standards and secure coding practices, creating a distinctly bright future for
the platform. Always remember that beyond the rudimentary, there exist
depths to explore within the Deno ecosystem - a continuous journey born
of curiosity and enthusiasm.

Essential Deno Tools: deno fmt, deno lint, and deno doc

Picture yourself cruising down your TypeScript codebase’s intricate highways,
with a critical eye for details and an appetite for consistency. Enter ‘deno
fmt‘. As a denizen of any language knows, few tools whittle off rough edges
and round out jagged inconsistencies like a formatter. With Deno’s built - in
formatter, one can revamp code style with sweeping elegance and unyielding
precision in a single stroke. Simply running ‘deno fmt <file - path>‘ in your
command shell works wonders in reordering misaligned braces, misplaced

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

20

spaces, and wayward punctuation marks that have gone rogue in your
code, allowing you to focus on the semantics of your code rather than the
superficial aesthetics.

It would be remiss, however, to discount aesthetics altogether. Picture
your code as a carefully cultivated garden; consistent formatting provides
that symphonic coherence to maintain a serene landscape, free of encroaching
weeds. As such, incorporating ‘deno fmt‘ empowers you to revisit your
masterpiece in constructive collaboration with others, unhindered by the
inevitable discordant styles that arise along the journey.

Elevating the quality of your opus would be incomplete without the
trusty ‘deno lint‘. This indispensable aid illuminates the nooks and crannies
in your code that might inadvertently breed confusion or all too often slip
through the cracks of initial scrutiny. Whether to hone in on an errant
‘var‘ declaration instead of a more modern ‘let‘ or ‘const‘, or to caution you
against that seemingly innocuous triple equals, ‘deno lint‘ casts its watchful
eye through your source files. Activating its power, like wielding Excalibur,
requires only a modest incantation: ‘deno lint <file - path>‘. The result is
a comprehensive enumeration of potential issues and recommendations to
further harmonize your codebase.

Second only to the most mellifluous code emerges sound documentation.
In this realm, ‘deno doc‘ reigns supreme. By bestowing its analytical prowess
upon TypeScript module files, it generates tailored documentation to fit
your code like a glove. Envoking this tool via ‘deno doc <module - path>‘
produces a testament to your work, replete with the essential syntax and
details of your module and its exported members. More significantly, it
furnishes testamentary evidence of your work to collaborators, users, and
even your future self. Imagine relishing the satisfaction of quickly grasping
the contents of your own code months down the line, thanks to the diligent
narrative woven by ‘deno doc‘.

Picture these three paragons of the Deno toolchain, not as latter - day
knights in shining armor, but as the esteemed confidants of your creative
prowess. As heralds of sublime harmony, they Illuminate the path to
coherent and discerning codebases while forestalling the distractions that so
often plague the craft of programming. With such formidable allies at your
command, the realms of Deno and TypeScript stretch out before you, an
expanse ripe for innovation and a haven for the ultimate artistry. </module

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

21

- path></file - path></file - path>

Migrating from Node.js to Deno: Considerations and
Strategies for Transitioning Existing Projects

Before embarking on the migration process, it’s vital to have a clear under-
standing of the differences between Node.js and Deno that could impact
your project. Some key distinctions that warrant special attention during
migration are:

1. Deno’s focus on enhanced security and the use of permission flags,
which might require rethinking how your application accesses resources
such as the file system, network, or environment variables. 2. The change
from CommonJS modules (used in Node.js) to ES modules, which requires
converting ‘require()‘ statements to ‘import‘ and updating module exports.
3. The inclusion of TypeScript support in Deno, enabling the opportunity
to refactor your JavaScript codebase to TypeScript and leverage the benefits
of static typing and other TypeScript features. 4. The absence of certain
Node.js built - in modules in Deno, such as ‘http‘, ‘fs‘, and ‘os‘, which have
been replaced with corresponding Deno global APIs or standard library
utilities.

Given these differences, the first step in the migration process is to assess
your existing Node.js project and identify dependencies, core modules, and
parts of your codebase that will require refactoring or adjustments. An
invaluable asset in this process is the Deno compatibility layer for Node.js,
called ‘deno.ns‘. By importing this layer into your project, you can assess
and mitigate compatibility issues in your codebase by replacing Node.js
built - in modules with their Deno equivalents.

Once you have a clear understanding of the project’s dependencies and
required changes, it’s time to build a migration strategy. The key to a
successful transition is breaking down the process into manageable phases,
some of which might include:

1. Phasing out dependency on Node.js built - in modules, replacing
them with equivalent Deno global APIs or standard library utilities. 2.
Rewriting the application’s module system from CommonJS to ES modules.
3. Refactoring your JavaScript code to TypeScript, gradually strengthening
types and leveraging the benefits of TypeScript’s features. 4. Updating tests

CHAPTER 1. INTRODUCTION TO DENO AND TYPESCRIPT FOR EXPERI-
ENCED ENGINEERS

22

and ensuring they work with Deno’s built - in test runner. 5. Reconfiguring
build and CI/CD pipelines to work with Deno and integrating new Deno -
specific tooling, like ‘deno fmt‘, ‘deno lint‘, and ‘deno doc‘.

Testing and ensuring compatibility with third - party modules in the new
Deno ecosystem is another essential aspect of the migration process. To
aid with this, Deno provides a module registry called ‘deno.land/x‘, which
contains third - party modules compatible with Deno. It’s important to
verify that your project’s dependencies have compatible Deno versions or to
identify suitable replacements if necessary.

Aside from code changes, it’s equally crucial to optimize the developer
experience during migration. Setting up the ideal development environment
will streamline the transition and help minimize friction for team members.
Modifying the development workflow to include new Deno - specific tools
such as hot reloading, linting, and formatting is essential for maximizing
productivity and ensuring the quality of the migrated codebase.

Finally, navigating the transition from Node.js to Deno within a large
organization can be challenging; it’s crucial to manage stakeholder ex-
pectations and develop a clear communication plan. Engaging with the
development team, understanding their concerns and needs, and providing
satisfactory explanations for the migration decision is crucial for fostering
buy - in and a smooth transition process.

In conclusion, migrating from Node.js to Deno can be a rewarding process,
as developers benefit from enhanced security, TypeScript support, and built
- in utilities that come with the Deno runtime. By carefully assessing your
existing Node.js codebase, planning a solid migration strategy, ensuring
dependency compatibility, and optimizing the development environment, a
successful transition can be achieved. Remember that migration is not a
one - size - fits - all process, but with attentiveness to your project’s unique
nuances and effective strategy execution, the journey from Node.js to Deno
can result in a performant, secure, and enjoyable codebase for years to come.

Chapter 2

Setting Up a Deno
Development Environment

To begin with, we need to address the prerequisites of a Deno development
environment. A stable internet connection is required for downloading the
Deno executable and third - party modules. The latest version of Deno is
compatible with Windows, macOS, and Linux operating systems, ensuring
smooth installation irrespective of your preferred platform.

Deno installation can be executed using package managers such as
Homebrew, Scoop, or Chocolatey, or with shell commands. By following the
official Deno installation guide, we obtain the Deno binary, which contains
all core Deno functionality, including the runtime, formatting, and linting
tools. Following installation, it is essential to add Deno to the system PATH,
enabling it to be called from anywhere within the command line or terminal.

Next, choosing the right integrated development environment (IDE) is
paramount for harnessing Deno’s full potential. While many developers
favor Visual Studio Code (VSCode) for Deno development due to its highly
customizable nature and extensive extension ecosystem, JetBrains WebStorm
and Sublime Text are also excellent choices. Whichever IDE is chosen, ensure
that it accommodates Deno - specific features, such as code completion,
linting, and syntax highlighting by installing the appropriate extensions or
plugins.

Now that our IDE is Deno - ready, we need to configure the TypeScript
development environment. This involves creating a ‘tsconfig.json‘ file in the
project root, which allows us to configure the TypeScript compiler to suit

23

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 24

specific project requirements. Since Deno has a slightly different module
resolution compared to the default TypeScript behavior, a Deno - specific
configuration file - ‘deno.tsconfig.json‘ - is necessary. By specifying options
such as ”noEmit” and ”isolatedModules,” we can tailor the TypeScript
compiler settings to the unique requirements of Deno projects while retaining
the advantages of TypeScript language features.

To further streamline our development workflow, harnessing essential
Deno development tools is crucial. Tools like ’denon’ serve as a nodemon-like
wrapper for Deno projects, providing useful features, such as hot - reloading
and watching file changes. Additionally, leveraging the ’deno installer’
package enables smoother installation and management of additional depen-
dencies and the ’deno doc’ tool, enhancing code documentation capabilities.

One of Deno’s strongest selling points is its built - in standard library,
which covers a broad range of functionalities, such as string manipulation,
date formatting, and networking utilities. Incorporating the Deno standard
library into your projects allows you to abstain from external dependencies
while maintaining clean, efficient, and secure code.

By now, our development environment is nearly Deno - optimized. The
final step involves integrating Deno with the TypeScript ecosystem. Ensuring
proper compatibility demands that we utilize features such as the Deno
namespace, import maps, and compiler options. When configured correctly,
these elements work in tandem to offer an elegant, seamless experience in
Deno development.

With the Deno development environment now adequately set up, our
voyage into the uncharted waters of Deno and TypeScript can truly be-
gin. By constructing this solid foundation, we have not only successfully
prepared ourselves for the challenges that lie ahead but also opened the
door to countless opportunities afforded by Deno’s meticulous design and
the inherent power of TypeScript. By adopting this modern development
environment, we now stand ready to conquer the future of server - side
JavaScript development and seize the accompanying potential with steadfast
determination and unwavering curiosity.

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 25

Installing Deno: Requirements and Prerequisites

Deno is a modern JavaScript and TypeScript runtime that aims to fill the
gaps and address the shortcomings of its predecessor, Node.js. As such,
it may be unsurprising to learn that the core team behind Deno is the
same team who brought us Node.js. The installation process for Deno is
straightforward, but it’s useful to be aware of specific requirements and
potential caveats, as they apply to different development environments,
platforms, and setups.

Deno is available for all popular operating systems, including macOS,
Linux, and Windows. Dyed - in - the - wool OS maintainers can heave a sigh
of relief, for Deno is available in their operating systems of choice. The
team behind Deno has gone to great lengths to ensure it is cross - platform,
allowing diverse developer communities to enjoy and explore its advantages.
At the time of this writing, Deno supports macOS 10.13 (High Sierra) or
later, Linux (64 bit), and Windows 7 or later (64 bit).

Installing Deno is a simple task, thanks to the handy one - liners. An
exciting aspect of installing Deno is that it provides a single executable
file, significantly simplifying the procedure compared to other runtimes and
platforms. This design decision reduces the number of moving parts that
you need to manage on your system, making Deno an easy choice to adopt,
experiment with, or integrate into your projects.

For macOS and Linux users, the installation process can be achieved
with the following one - liner command using ‘curl‘:

“‘ curl -fsSL https://deno.land/x/install/install.sh sh “‘
For Windows users not utilizing Windows Subsystem for Linux (WSL),

the installation can be done from PowerShell by running the following
command:

“‘ iwr https://deno.land/x/install/install.ps1 -useb iex “‘
Once you’ve executed the installation command, the script downloads

the latest release of Deno, places it in your system’s appropriate binary
folder, and appends the necessary environment variables to access Deno
from the command - line. The level of effort needed for installing Deno on
different operating systems is minimal, ensuring the installation is quicker
and more effortless.

Yet, development isn’t all roses in a programmer’s life, and one might

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 26

occasionally encounter rough edges during the installation. For instance, if
your system lacks the necessary permissions to modify environment variables
or amend the system PATH, you may need to perform these tasks manually.
Deno’s documentation provides comprehensive assistance for such scenarios,
ensuring that you are never too far from getting started with your Deno
journey.

To verify a successful installation, you can invoke the following command
in your terminal or command prompt:

“‘ deno - - version “‘
The output should display the current version of Deno installed on your

system. Congratulations, you’ve successfully crossed the first hurdle in
getting started with Deno!

As the landscape of software development evolves, Deno is carving its
niche with its unique and growing capabilities. Deno presents a breath of
fresh air by improving on the shortcomings of its predecessor and addressing
the modern needs of the development community. While the installation
process is a minor cog in the vast machinery of Deno, it is an essential first
step in understanding and exploring the potential of this new runtime.

Configuring Deno: Setting Environment Variables and
Updating PATH

Setting environment variables is crucial to the smooth operation of any pro-
gramming environment and is no exception when working with Deno. They
help in providing runtime configurations, specifying the working location of
the executables, and establishing third - party tool integration. Establishing
the proper environment variables for Deno differs across operating systems
but usually involves defining the ‘DENO INSTALL‘, ‘DENO DIR‘, and
‘PATH‘.

To set up the ‘DENO INSTALL‘ and ‘DENO DIR‘, first, choose a
location on your local filesystem to host Deno’s binary and cache files.
For example, you can create a directory called ”.deno” in your ”home”
directory on Unix - based systems (macOS and Linux) or ”user” directory
on Windows. The ‘DENO INSTALL‘ variable should point to the directory
containing the deno executable, while ‘DENO DIR‘ should point to the
directory to store the cache files. Keep in mind that if you do not explicitly

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 27

set the ‘DENO DIR‘, it falls back to the OS’s default cache directory (e.g.,
‘˜/.cache/deno‘ on Linux).

After setting up the ‘DENO INSTALL‘ and ‘DENO DIR‘, update the
system PATH by appending the path to the Deno executable, i.e., the bin
directory within your ‘DENO INSTALL‘ location. On Unix - based systems,
add the following lines to your shell configuration file (e.g., ‘˜/.bashrc‘,
‘˜/.zshrc‘, or ‘˜/.bash profile‘):

“‘sh export DENO INSTALL=$HOME/.deno export DENO DIR=$DENO INSTALL
export PATH=$DENO INSTALL/bin:$PATH “‘

On Windows, edit the ”Environment Variables” in the ”System Prop-
erties” and append the path to the Deno executable to the ”Path” vari-
able under the ”User variables” section. Alternatively, in the PowerShell
console, add the following lines to your PowerShell profile file stored in
‘Documents/WindowsPowerShell/Microsoft.PowerShell profile.ps1‘:

“‘powershell $env:DENO INSTALL = ”$env:USERPROFILE.deno” $env:DENO DIR
= ”$env:DENO INSTALL” $env:PATH += ”;$env:DENO INSTALLbin” “‘

Once the environment variables are set and the system PATH is updated,
you can invoke Deno from the command line or terminal by simply typing
”deno”. With this configuration, you can enjoy seamless integration of Deno
with your favorite development tools, whether you are working on a Unix
- based system or a Windows computer. Moreover, ensuring the proper
configuration of these variables is crucial for a streamlined experience of
Deno’s advanced capabilities, such as its built - in formatter, linter, tester,
and bundler.

In summary, configuring Deno involves setting strategic environment
variables (‘DENO INSTALL‘ and ‘DENO DIR‘) and updating the system
PATH to reflect the location of the Deno executable. By carefully following
these configuration steps, you have paved the way to harness the full potential
of Deno’s impressive feature set. Although Deno’s journey might appear
intimidating at first glance, remember that each small step - such as setting
environment variables - is a crucial part of building a robust, efficient, and
secure TypeScript adventure.

As you continue to navigate the Deno ecosystem, you will discover an
exciting world of utilities and libraries ready to be explored. Whether you
are starting from scratch or migrating from Node.js, mastering the art of
configuring Deno is the gateway to building applications in this modern

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 28

runtime environment. With the foundation now laid, it’s time to embrace
the realm of TypeScript - the language that breathes life into your Deno
applications.

Choosing your IDE and Integrating with Deno: Visual
Studio Code, JetBrains WebStorm, Sublime Text

Visual Studio Code (VSCode) has emerged as a favorite open - source code
editor for developers worldwide in recent years, delivering an impressive
list of features in a sleek, extendable environment. VSCode is built on the
Electron platform, leveraging web technologies at its core while maintaining
cross - platform compatibility. The integration of Deno into VSCode can
be effortlessly achieved by installing the Deno extension available in the
marketplace.

Once installed, the Deno extension provides a seamless experience that
includes autocomplete, syntax highlighting, type - checking, navigation,
refactoring, debugging, formatting, linting, and testing support. Moreover,
its massive gallery of plugins and extensions make VSCode versatile in
accommodating a wide array of technologies, which can help you enhance
productivity further.

Although VSCode takes the lead in terms of Deno - integration and
popularity, JetBrains WebStorm deserves its fair recognition for being a
powerful and sophisticated IDE. With a proven reputation for delivering
world - class JavaScript and TypeScript development tools, WebStorm is an
excellent choice for developers planning to work extensively with Deno.

WebStorm supports Deno out - of - the - box as of version 2020.3, thus
requiring no additional extensions or plugins to work with Deno. Among
WebStorm’s core features that contribute to a delightful development expe-
rience are advanced code completion, error detection, powerful navigation,
and refactoring capabilities. Furthermore, its integrated visual debugger
and testing tools, combined with exceptional support for web technologies,
make it a reliable all - in - one solution for web development.

Maintaining a lightweight and nimble adage, Sublime Text is often seen
as a middle ground between a simple text editor and a full - fledged IDE. Its
ability to cater to diverse programming languages makes it a plausible option
for those who need the flexibility to work on multiple projects simultaneously.

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 29

Sublime Text transitions into a Deno - compatible environment by installing
the Deno extension utilizing the Sublime Text Package Manager.

After setting up the Deno extension, Sublime Text is equipped with
code - completion, syntax highlighting, error - detection, and formatting
capabilities that streamline Deno development. Although it does not include
the out - of - the - box support for debugging and various other sophisticated
features, Sublime Text can extended through the vast palette of plugins
available in its package control ecosystem. An important aspect to note is
that Sublime Text charges a one - time license fee, making it one of the few
commercially - priced text editors.

Choosing the right IDE is a largely subjective decision that depends on
a variety of factors such as prior experience, personal preferences, project
requirements, and budget constraints. While exploring different IDEs, one
should prioritize comfort in the working environment and consider the tools
that enable efficient and enjoyable development.

Having weighed the pros and cons of these IDEs, we can conclude
that Visual Studio Code excels in providing a solid foundation for Deno
projects with its abundant features, ease of use, and free open - source
offering. JetBrains WebStorm follows closely, with its reliable performance
and advanced capabilities, catering to the needs of web developers who
require a premium integrated experience. Finally, Sublime Text is perfect for
those who value a minimalist and nimble environment that can be tailored
to fit their unique requirements.

Ultimately, once you have found the IDE that best suits your needs,
connecting it with Deno becomes a mere prelude to a vibrant symphony of
code where TypeScript plays harmoniously alongside the Deno runtime as
they create masterpieces that compose the fabric of the modern web.

Setting up TypeScript Development Environment: tscon-
fig.json and deno.tsconfig.json

The tsconfig.json file is a central piece in configuring the TypeScript compiler
behavior. Some common settings in tsconfig.json include compilerOptions,
files, include, and exclude properties. These settings can be fine - tuned to
control the TypeScript integration in a Deno project effectively. However,
Deno’s built - in TypeScript runtime operates slightly differently from the

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 30

standalone TypeScript compiler. It uses a dedicated deno.tsconfig.json file
to apply its compiler options.

Some recommended compiler options to include in the deno.tsconfig.json
are:

1. ‘”noImplicitAny”: true‘: By making sure this option is enabled (true),
we ensure that there are no implicitly assumed types in our TypeScript
code. This leads to more predictable behavior and improved type safety
during development.

2. ‘”strict”: true‘: The strict mode for TypeScript includes a set of
stricter type - checking rules and options, such as ‘noImplicitThis‘, ‘noImplic-
itAny‘, and ‘strictNullChecks‘, among others. Enabling this setting results
in more comprehensive type checking, which can help improve the overall
code quality.

3. ‘”lib”: [”deno.ns”, ”dom”, ”dom.iterable”, ”esnext”]‘: The ’lib’ com-
piler option allows us to specify custom library files that should be included
during development. In the case of Deno, it is recommended to include the
universal Deno namespace (”deno.ns”) along with the necessary standard
libraries. ”dom” and ”dom.iterable” are generally needed when we use Web
APIs in our Deno projects, while ”esnext” includes the latest ECMAScript
features that are available.

4. ‘”isolatedModules”: true‘: Enabling isolatedModules ensures that
every TypeScript file is treated as an isolated module. This avoids any issues
due to TypeScript’s dependency resolution process that may be incompatible
with Deno’s runtime.

5. ‘”esModuleInterop”: true‘: This setting brings about better compat-
ibility with existing ECMAScript module systems where default imports
may not be adequate. It can be helpful when interacting with a mix of
JavaScript and TypeScript modules in your Deno application.

A basic deno.tsconfig.json file for Deno development incorporating the
recommended settings is provided below:

“‘ { ”compilerOptions”: { ”target”: ”esnext”, ”module”: ”esnext”,
”strict”: true, ”noImplicitAny”: true, ”isolatedModules”: true, ”esMod-
uleInterop”: true, ”lib”: [”deno.ns”, ”dom”, ”dom.iterable”, ”esnext”] } }
“‘

Once you have configured tsconfig.json or deno.tsconfig.json, it is time to
set up our TypeScript development environment with a proper IDE. Popular

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 31

IDEs such as Visual Studio Code, JetBrains WebStorm, and Sublime Text
provide plugins and extensions with Deno support, making it seamless to
work with projects using TypeScript and Deno. These IDEs offer features
such as syntax highlighting, auto - formatting, automated type - checks, and
debugging support, providing ease and lesser room for error.

Essential Deno Development Tools: denon, deno installer,
deno doc

We begin with denon, a highly useful tool that greatly enhances the de-
velopment experience by automatically restarting your Deno applications
whenever there are changes to the source files. The denon tool, inspired
by the widely used nodemon utility in Node.js development, offers a sim-
ple yet effective mechanism to monitor your source code for changes and
subsequently relaunch your application. By adopting denon, developers can
increase productivity and maintain focus on writing code without worrying
about manually restarting the application after every modification. Consider
the following example:

“‘bash $ denon run - - allow - net server.ts “‘
In this example, you invoke denon to run your Deno application (server.ts)

with the ’ - - allow - net’ flag, which permits network access. denon then
monitors the specified source file and any imported modules for changes,
automatically restarting the server whenever modifications occur.

Next, we introduce the deno installer, a handy tool that allows you to
easily create executable scripts for Deno applications. deno installer enables
you to install third - party Deno modules as globally available command
- line tools, making them readily accessible across different projects. By
utilizing the deno installer, you can streamline the process of distributing
and managing Deno applications. Let us consider an example wherein we
install drun, a popular CLI tool for Deno:

“‘bash $ deno install -A - - name=drun deno.land/x/drun/mod.ts “‘
In this example, we use the deno installer to install the drun module

from the deno.land registry. We then specify the ’ - A’ flag to grant all
permissions, and the ’ - - name’ flag to assign a custom name (drun) to the
generated executable.

Lastly, we focus on deno doc, a vital utility for generating API documen-

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 32

tation from TypeScript source code. With strong developer collaboration
and open - source contributions at the core of Deno’s success, having up - to -
date and comprehensive documentation is crucial. deno doc produces easy -
to - read documentation in a standardized format, enabling developers to
effectively communicate the capabilities and usage patterns of their Deno
modules. To generate documentation for a specific module, you can run the
following command:

“‘bash $ deno doc mod.ts “‘
This command generates a set of documentation based on the JSDoc

annotations and TypeScript type information supplied within the specified
module (mod.ts). The generated output will display function signatures,
classes, and types alongside their descriptions, ensuring that your project’s
API is well - documented and understandable for fellow developers.

Let us construct a vivid image of a Deno project where these tools
seamlessly work in tandem. Imagine you are a developer working on a
robust REST API. You harness the power of denon to improve your devel-
opment cycle by auto - reloading the server on code changes. You leverage
deno installer to share the project with your team, providing them with
an executable script that they can effortlessly incorporate into their own
environments. And finally, you employ deno doc to create comprehensive
API documentation, effectively conveying the ins and outs of your project’s
functionality to all its stakeholders.

Using Deno Standard Library in your Projects

As developers embark on their journey with Deno, the standard library serves
as an essential companion, providing battle - tested and reliable utilities to
make your projects more robust. The Deno standard library is a collection
of modules built on top of Deno’s runtime APIs that offers functionality
required for building most applications. By leveraging the power of the
standard library, developers can create diverse projects, ranging from simple
scripts to full - fledged web applications.

One of the key benefits of using the Deno standard library is its versatility
in offering a rich toolset of functions and utilities. Also, as these modules
are officially maintained, you can be confident in their quality, performance,
and ongoing improvements with each new Deno release.

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 33

In order to make the best use of the Deno standard library, let’s walk
through its different facets and explore how they can be applied in your
Deno applications.

First, importing a module from the standard library is straightforward.
You can directly import the module via a URL, and Deno will handle the
caching and updating of the library for you. Let’s say you want to use the
‘serve‘ function from the ‘http‘ module to create a simple web server. You
can import it as follows:

“‘typescript import { serve } from ”https://deno.land/std@0.117.0/http/server.ts”;
const server = serve({ port: 8000 });
console.log(”Server running on http://localhost:8000”);
for await (const request of server) { request.respond({ body: ”Hello,

World!” }); } “‘
As you can see, the import statement not only specifies the module but

also includes a version number. This ensures that your applications will
always use a specific version of the standard library, reducing the risk of
unexpected breaking changes due to library updates.

Now let’s dive into a few key features and modules provided in the Deno
standard library.

File System Operations: Deno’s standard library includes an ‘fs‘ module,
making it easy to work with files and directories. This module provides
utilities for common operations, such as reading and writing files, traversing
directories, and creating temporary files.

Here’s an example of reading a file using the ‘fs‘ module:
“‘typescript import { readFileStr } from ”https://deno.land/std@0.117.0/fs/mod.ts”;
const content = await readFileStr(”file.txt”, { encoding: ”utf - 8” });

console.log(content); “‘
Networking: Deno’s standard library offers powerful networking ca-

pabilities with ‘http‘ and ‘net‘ modules. They provide various functions
and abstractions for working with HTTP servers, clients, and low - level
TCP/UDP protocols. Additionally, Deno’s standard library also provides
WebSocket implementation, making it easier to build real - time applications.

Working with JSON: Dealing with JSON is a common requirement in
many applications. The ‘encoding/json‘ module provides a convenient way
to parse and stringify JSON data.

“‘typescript import { parse, stringify } from ”https://deno.land/std@0.117.0/encoding/json.ts”;

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 34

const jsonString = ’{”name”:”Alice”,”age”:30}’; const jsonObject =
parse(jsonString);

console.log(jsonObject);
const jsonData = { name: ”Bob”, age: 25 }; const jsonStr = stringify(jsonData);
console.log(jsonStr); “‘
Datetime: Dealing with date and time can be a rather tedious task in

programming. Deno’s standard library offers a ‘datetime‘ module, providing
an easier interface for parsing, formatting, and manipulating dates and
times.

“‘typescript import dayOfYear from ”https://deno.land/std@0.117.0/datetime/mod.ts”;
console.log(dayOfYear(new Date())); // Prints the day of the year. “‘
These examples barely scratch the surface of what the Deno standard

library can offer. From handling environment variables and text encodings to
creating server - side rendering and templating solutions, you’ll find modules
that cater to a wide variety of programming tasks.

As you use the Deno standard library in your projects, remember that
it offers more than just better code organization and modularity. It also
provides consistency and reliability through tested and maintained modules.
By taking full advantage of these features, you’re well - equipped to create
top - tier applications in the Deno ecosystem.

Configuring Deno with TypeScript: Compiler options
and Import Maps

Configuring Deno with TypeScript: Compiler Options and Import Maps
One of the most significant aspects that set Deno apart from Node.js is

its ability to work with TypeScript out of the box. Deno parses and compiles
TypeScript internally, and there is no need to use external tools like ‘tsc‘
or ‘ts - node‘. However, it’s important to understand that the Deno team
had to make certain assumptions when setting up the default configuration.
Therefore, you may want to customize the TypeScript configuration to suit
your specific needs or adhere to your organization’s coding standards. This
is where the ‘tsconfig.json‘ file comes into play.

In a Deno project, you can provide a custom ‘tsconfig.json‘ file to
modify the compiler options. To do this, create a ‘tsconfig.json‘ file in your
project’s root directory, then pass the ‘ - - config‘ flag to the ‘deno run‘

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 35

command followed by the location of your ‘tsconfig.json‘ file: ‘deno run - -
config=tsconfig.json your script.ts‘. Deno will use this configuration file for
TypeScript compilation, and any custom settings you provide will overwrite
the default ones.

Within the ‘tsconfig.json‘ file, you can specify many compiler options
that help optimize the project for different requirements. For instance, if
your project needs strict type - checking, you can enable ‘strict‘ mode by
setting the ‘strict‘ option to ‘true‘. Another noteworthy option is ‘baseUrl‘,
which simplifies module imports by specifying a base URL for all module
imports, preventing the need for relative paths altogether.

In certain cases, you may also want to take advantage of import maps -
an experimental feature currently available in Deno. Import maps provide a
simple, concise mechanism to map module specifiers to their actual locations.
For instance, if you have many third - party dependencies in your project,
managing and updating their paths can become cumbersome. Import maps
can help you overcome this hurdle by keeping all module locations in a
centralized location - a JSON file that maps each module specifier to its
corresponding URL.

To use import maps in Deno, create an ‘import map.json‘ file and list
all module specifiers mapped to their URLs. Then use the ‘ - - import - map‘
flag followed by the location of your ‘import map.json‘ file in the ‘deno run‘
command: ‘deno run - - import - map=import map.json your script.ts‘. Once
set up, you can refer to the module specifier instead of the full URL. Besides
improving the readability and maintainability of your code, import maps
also enable you to create aliases for your modules, which can come in handy
when refactoring or updating dependencies.

Let’s exemplify this concept with a practical case. Assume we want to
import and use the popular ‘lodash‘ library in our Deno project. Without
using import maps, the import statement would look like this:

“‘typescript import from ”https://deno.land/x/lodash/mod.ts”; “‘
Now, let’s see how import maps can simplify this import statement.

First, create an ‘import map.json‘ file with the following mapping:
“‘json { ”imports”: { ”lodash”: ”https://deno.land/x/lodash/mod.ts” }

} “‘
Then, update your import statement in the TypeScript file:
“‘typescript import from ”lodash”; “‘

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 36

Lastly, run your script with Deno using the ‘ - - import - map‘ flag:
“‘ deno run - - import - map=import map.json your script.ts “‘
Note that import maps are still an experimental feature in Deno, and

it’s crucial to thoroughly test your application when using them. However,
import maps hold great potential for simplifying dependency management,
and they might become a standard feature in future Deno releases.

Debugging Deno Applications: Remote Debugging and
VSCode Configuration

Debugging Deno applications starts with the understanding of the remote
debugging protocol, which is based on the Chrome DevTools Protocol.
Because Deno is built on top of the V8 engine, developers can leverage the
same protocol Google Chrome uses for its developer tools. The V8 engine
exposes an HTTP - based protocol that allows developers to attach to Deno
processes and execute debugging commands. Remote debugging enables
inspection, modification, and application control via this protocol.

To begin remote debugging, first start your Deno application with the ‘ -
- inspect‘ flag followed by a host and port number, such as ‘127.0.0.1:9229‘.
This flag binds the V8 inspector protocol to the specified address. Deno
will then output a WebSocket URL, which can be used to connect to the
remote debugger.

Now, with your Deno application running and awaiting connection, let’s
move to VSCode to set up the necessary configuration. First, ensure you
have the Deno extension for VSCode installed. After installing the extension,
create a new launch configuration file named ‘launch.json‘ in the ‘.vscode‘
directory. This file will guide the debugger to connect to the WebSocket
URL generated earlier.

Here’s a sample ‘launch.json‘ configuration tailored for a Deno project:
“‘json { ”version”: ”0.2.0”, ”configurations”: [{ ”name”: ”Deno”, ”type”:

”pwa - node”, ”request”: ”attach”, ”cwd”: ”${workspaceFolder}”, ”attach-
SimplePort”: 9229, ”resolveSourceMapLocations”: [”${workspaceFolder}/**”,
”!**/node modules/**”] }] } “‘

In the configuration above, we define an object with the key ‘”configura-
tions”‘ - an array of configurations. The ”Deno” configuration includes:

- ‘”type”: ”pwa - node”‘: specifying the debugger’s type as a Progressive

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 37

Web Application using Node.js. - ‘”request”: ”attach”‘: indicating that
we want to attach to a running debug target rather than launching a new
one. - ‘”attachSimplePort”: 9229‘: instructing the debugger to attach to
the WebSocket URL listening at port ‘9229‘.

After configuring the ‘launch.json‘, you can now enable the connection
between the Deno application and VSCode. Press the ”F5” key within
VSCode to launch the debugger and attach to your Deno process. Once
connected, you’ll have access to the wealth of debugging functionalities
provided by the IDE, including adding breakpoints, stepping through code,
and watching variables and expressions.

When using breakpoints in Deno, ensure that the Deno extension in
VSCode is activated. The extension provides the necessary source map
support for TypeScript files, allowing breakpoints to pause the execution
flow at the correct lines of code.

Remote debugging and its integration with VSCode can drastically
improve the debugging experience for Deno applications. It gives developers
unparalleled insight into the runtime state, allowing them to fix issues more
efficiently. This approach will save you the countless hours typically spent
inserting ‘console.log‘ statements just to disentangle the riddle of your code’s
behavior.

Despite Deno’s impressive progress in the JavaScript ecosystem, it’s
important to remember that this journey is far from over. The relentless and
collaborative pursuit of improvement by Deno’s developers and community
members alike will push the boundaries of what we can achieve in the ever -
evolving landscape of web development. Let the lessons we’ve learned so far
serve as an affable guide to experimentation and ingenuity as we venture
forth, battle - ready, into the next challenges that lie ahead.

Establishing an Efficient Workflow: Hot Reloading, Lint-
ing, and Formatting

A crucial aspect of an efficient Deno development environment is hot reload-
ing, which enables you to recompile and restart your application automat-
ically upon saving changes made to your project files. By implementing
hot - reloading in your Deno development environment, developers can save
valuable time by not having to manually stop, recompile, and restart their

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 38

application after making changes. Denon, an external Deno utility, can be
easily installed and used to achieve this efficient workflow, with the following
command:

“‘ deno install -A --unstable -n denon https://deno.land/x/denon/mod.ts
“‘

With the Denon utility installed, you can now configure a ‘denon.json‘
configuration file in your project directory with the following structure:

“‘json { ”scripts”: { ”start”: { ”cmd”: ”deno run - - allow - read - - allow -
net app.ts”, ”desc”: ”Run my Deno app”, ”reload”: [”app.ts”, ”src”] } } } “‘

Now you can use the ‘denon start‘ command, and you will have a hot
reloading setup that listens for file changes in both ‘app.ts‘ and any files
inside the ‘src‘ directory.

Linting refers to the process of analyzing your source code to detect po-
tential programming errors, bugs, or stylistic issues. It can be an invaluable
tool for maintaining high - quality code throughout your project. Deno’s
built - in linting functionality ‘deno lint‘ is based on the powerful ESLint
and dprint libraries, supporting a wide array of rules to keep your code
consistent and maintainable. To customize your linting preferences, create
a ‘.denolintignore‘ file to list any files or directories that should be ignored
and a ‘deno.json‘ file to configure the rules. For example:

“‘json { ”lint”: { ”files”: { ”include”: [”src”], ”exclude”: [”node modules”,
”dist”] }, ”rules”: { ”tags”: [”recommended”], ”include”: [”no - debugger”],
”exclude”: [] } } } “‘

This configuration will apply the recommended rules, include the ‘no
- debugger‘ rule, and apply linting only to files inside the ‘src‘ directory,
excluding any in ‘node modules‘ or ‘dist‘.

Formatting is another essential aspect of an efficient workflow, as it
ensures that your source code is easy to read, comprehend, and maintain.
Deno has built - in support for code formatting through the ‘deno fmt‘
command. This command formats your files based on the default formatter
settings or based on configuration specified in the ‘deno.json‘ file:

“‘json { ”fmt”: { ”files”: { ”include”: [”src”], ”exclude”: [”node modules”,
”dist”] } } } “‘

By incorporating hot - reloading, linting, and formatting into your de-
velopment workflow, the efficiency gained allows developers an opportunity
to tackle bigger picture problems in their application’s architecture and

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 39

fine - tune their design patterns. Additionally, it promotes a collaborative
work environment where team members can develop high - quality code that
conforms to the same set of standards.

Imagine a world where developers can focus on creating innovative
solutions while these foundational tools handle the mechanical tasks of
maintaining clean, consistent, and readable source code. Embracing these
workflow optimization techniques can propel your Deno projects from pri-
mordial prototypes to highly - refined, battle - tested professional - grade
applications.

With your Deno development environment now optimized for an efficient
workflow, we will now dive into the powerful utilities and functionality offered
by Deno core modules in the next part of our journey. Prepare to embrace
the limitless potential of rewriting the way we create web applications, one
Deno module at a time!

Integrating Deno with CI/CD Tools and Version control
Systems

One of the most widely adopted version control systems in modern software
development is Git. Git, along with platforms like GitHub, GitLab, and
Bitbucket, significantly facilitates collaboration between developers on joint
projects, making it easier to track changes and manage various features or
enhancements independently. Deno projects require little additional setup
to integrate with these version control systems, as they generally use the
standard ‘.gitignore‘ file to exclude unnecessary files or directories from
commits, such as the ‘.deno - dir‘ cache. Developers should also ensure they
exclude any sensitive information, such as API keys or other environment
- specific configurations, from their version control system and leverage a
proper secret management solution.

With the version control system in place, integrating Deno projects
with CI/CD tools is the next step in streamlining the development process.
There are several CI/CD tools and services to choose from, each with its
unique features, configurations, and benefits. Among them, GitHub Actions,
GitLab CI/CD, Jenkins, Travis CI, and CircleCI are some of the most
popular and versatile options. These CI/CD tools play a crucial role in
automating code - building, testing, and deployment processes whenever

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 40

changes are committed or merged to specific branches of the repository.
Let’s take GitHub Actions as an illustrative example for integrating

Deno into a CI/CD process. GitHub Actions enables developers to create
custom workflows that run on specified triggers, such as pushes or pull
requests to designated branches, utilizing powerful automation features and
integrations. With support from the Deno community, several pre - built
actions are available for developers to use, such as installing Deno, running
tests, and deploying applications.

Consider a simple Deno web server application that is internally tested
and ready for automated deployment to a cloud provider. To achieve this,
a developer might create a new GitHub Actions workflow file, such as
‘.github/workflows/deploy.yaml‘, defining the installation of Deno, testing of
the application, and deployment code. By using pre-built Deno actions such
as ‘denolib/install - deno@v1‘ or ‘denolib/setup - deno@master‘, a developer
can quickly and easily set up the Deno environment in a specific version of
their choice within the context of the GitHub Actions workflow. Once Deno
is set up, they can proceed with their usual testing and build processes,
utilizing further actions like ‘denolib/test‘ to ensure their code is properly
validated before deployment.

It is vital to mention that while the pre - built actions might be helpful
in kick - starting your CI/CD workflow, developers always have the option to
create custom actions or integrate the Deno CLI directly into their workflow
scripts. This flexibility ensures that complex use-cases can also be addressed
without restrictions.

With the power of CI/CD and version control systems, a Deno developer
can maintain a high - quality codebase, manage risk efficiently, and reduce
manual effort drastically, ultimately leading to more robust application
delivery and customer satisfaction.

As Deno continues its foray into the world of modern software develop-
ment, we expect to see the ecosystem expand, offering even more ways to
shape Deno projects’ present and future. This adaptability will not only
accelerate the adoption of Deno but also establish it as a mainstay in the ever
- evolving landscape of web development. Moving forward, it is incumbent
upon developers to not only familiarize themselves with the integration of
CI/CD tools and version control systems but also embrace their advantages
as necessities in developing robust and powerful Deno applications. The

CHAPTER 2. SETTING UP A DENO DEVELOPMENT ENVIRONMENT 41

investment you make in these tools today is a foundation for the resilient
and frictionless development process synonymous with the future of web
technology we all aspire toward.

Chapter 3

Core Deno Modules and
Utilities

The beginning of a journey sparks excitement, anticipation, and a tinge
of uncertainty. As we embark on our expedition into the world of Deno,
we find ourselves grasping the modules and utilities in our tool belt. Fear
not, for these are the instruments that empower us to shape and mold our
programs with finesse, just as a master craftsman would carve an intricate
sculpture.

Let us begin by examining the ‘Deno‘ global object, a versatile interface
that provides access to useful utilities. One notable functionality is the
manipulation of files and directories.

Consider an example where we wish to create a file, write some text,
then read and display the contents. With the ‘Deno‘ global object at our
fingertips, this task becomes as quick and easy as brewing a cup of tea:

“‘ts // Create and write to a new file const encoder = new TextEncoder();
const contents = encoder.encode(”Hello, Deno!”); await Deno.writeFile(”greetings.txt”,
contents);

// Read the contents of the file const decoder = new TextDecoder(); const
data = await Deno.readFile(”greetings.txt”); console.log(decoder.decode(data));
“‘

With merely a few lines, we have accomplished our goal. In using the
‘TextEncoder‘ and ‘TextDecoder‘ utilities, we can elegantly convert between
text and bytes, crafting a harmonious interplay between file reading and
writing.

42

CHAPTER 3. CORE DENO MODULES AND UTILITIES 43

Now, let us venture into the realm of networking. By leveraging the
power of the ‘Deno‘ object, creating a simple HTTP server becomes as
enjoyable as piecing together a jigsaw puzzle:

“‘ts // Import required objects import { serve } from ”https://deno.land/std/http/server.ts”;
// Create a server on port 8000 const server = serve({ port: 8000 });

console.log(”Deno HTTP server listening on port 8000”);
// Handle incoming requests for await (const request of server) { re-

quest.respond({ body: ”Hello, Deno!” }); } “‘
In the above example, our HTTP server kindly greets anyone who dares

to approach its digital doorstep. Furthermore, its non - blocking nature
allows it to accommodate multiple connections simultaneously.

To extend our digital reach, let us establish an FTP server. In the
following code snippet, we listen for incoming connections and send a
welcome message:

“‘ts // Import required objects import { listenAndServe } from ”https://deno.land/std/http/mod.ts”;
// Create an FTP server const server = listenAndServe(”0.0.0.0:21”,

async (conn) => { const encoder = new TextEncoder(); const wel-
comeMsg = encoder.encode(”220 Welcome to Deno FTP Server!”); await
conn.write(welcomeMsg); }); “‘

With this simple FTP server, we have laid the foundation for an even
more significant network infrastructure.

To top it all off, let us crown our exploration with the manipulation of
processes through the ‘Deno.run‘ API. We will execute a shell command
that lists files in the current directory:

“‘ts // Create a process to run the shell command const process =
Deno.run({ cmd: [”ls”], stdout: ”piped”, stderr: ”piped”, });

// Capture the output const output = await process.output(); const
errorOutput = await process.stderrOutput();

// Decode and display the output const decoder = new TextDecoder();
console.log(decoder.decode(output).trim()); console.error(decoder.decode(errorOutput).trim());

// Close the process process.close(); “‘
With just a few keystrokes, we have invoked the power of the command

line from within our Deno application, reaping the benefits of process
management.

The journey through the realm of Core Deno Modules and Utilities has
been a thrilling experience. Not only have we familiarized ourselves with

CHAPTER 3. CORE DENO MODULES AND UTILITIES 44

various functions and capabilities, but we’ve also scratched the surface of
limitless potential these tools provide. Imagine a master painter with an
extensive palette of colors, blending and shaping art with glee, for we, as
Deno developers, have access to an all - encompassing toolbox designed for
elegance, flexibility, and power.

As we continue our adventure into the Deno landscape, exploring its
security models and TypeScript integration, we shall enthusiastically wield
Core Deno Modules and Utilities like a true craftsman, ever eager to dive
deeper into this fascinating and enlightening new world.

Overview of Core Deno Modules and Utilities

To set the stage for our exploration, let’s take a moment to appreciate the
design principles behind Deno’s modules. Created by the same individual
who created Node.js, Deno aims to correct and improve certain aspects of
Node.js, with a strong focus on security, simplicity, and module management.
Deno’s unique and rather innovative usage of ECMAScript modules allows
developers to import modules using URLs, making it much easier to manage
dependencies and eliminate the need for a package manager like npm.

Now that we have established a high - level understanding of Deno’s
motivation and design, let’s venture into the crux of the matter: the core
Deno modules and utilities.

First and foremost, Deno has a global object called ‘Deno‘ that exposes
the majority of its functionality. Here, you will find various functions,
interfaces, and constants to interact with the file system, manage network
connections, and manipulate processes, among many others. For instance,
you can read and write files without requiring a separate ’fs’ module like
the one in Node.js.

For developers seeking the maximum level of functionality, Deno offers
the standard library, a collection of official modules that complement the
runtime API and assist in solving various common tasks. You can think of
the standard library as a treasure trove of utilities, ranging from file servers
and HTTP clients to advanced functions for handling dates, times, and
UUIDs. Standard library modules are versioned and maintained directly by
the Deno team, ensuring that they are not only reliable but also optimized
for seamless use with the runtime API.

CHAPTER 3. CORE DENO MODULES AND UTILITIES 45

File and directory operations are essential for any application, and Deno
makes this simple and practical. With the aid of the global ‘Deno‘ object and
related standard library functions, we can accomplish tasks like reading and
writing files, listing directories, and checking file and directory metadata.
All of this is accomplished without the need for heaps of unnecessary
dependencies and complex configurations.

Another critical aspect of application development is networking. Deno
provides powerful network APIs, allowing you to create servers, interact
with RESTful APIs, and establish connections over HTTP, HTTPS, and
even WebSockets. These features allow developers to build full - fledged
backends, APIs, and real - time applications.

When dealing with processes and signals, Deno offers the ‘Deno.run‘ and
‘Deno.signal‘ APIs to spawn and interact with external processes, enabling
a myriad of possibilities. You can create pipelines, pass data through stdin
and stdout, and receive notifications when processes exit or signals occur.

As we tread deeper into the Deno landscape, it is important to remember
the significance of security in this runtime environment. Deno’s permission
system enforces a sandboxed environment, allowing you to control the access
to resources like the file system, network, and environment variables. By
default, Deno applications cannot access these resources without explicit
permissions, making it less likely for malicious code to cause harm.

Streams, readers, and writers are abstract interfaces that provide a level
of flexibility when dealing with data in Deno. Alexander Pope once said, ”a
little knowledge is a dangerous thing,” but here at the core of Deno modules,
the opposite is true. Familiarity with these interfaces allows us to work with
various data sources, create custom streams and transformers, and manage
data flow effectively.

Finally, don’t underestimate the power of asynchronous utilities available
at your disposal in Deno. A collection of timers, delays, and promises provide
rich functionality for implementing and managing asynchronous code in your
applications. Furthermore, Deno allows usage of certain Web APIs, such
as Fetch and Crypto, directly in your projects without needing additional
dependencies.

As we conclude our voyage into the world of core Deno modules and
utilities, it becomes evident that this runtime has indeed evolved and learned
from the lessons of its Node.js predecessor. Deno’s ecosystem, rich with

CHAPTER 3. CORE DENO MODULES AND UTILITIES 46

functionality and focused on security, empowers developers to create modern
applications, APIs, and utilities that harness its full potential.

Using the Deno Standard Library: Introduction and Key
Functions

The Deno Standard Library, or ‘std‘ for short, is a collection of modules
that provide a wide array of utilities and building blocks that developers
can use to build applications. Just like the vast majority of Deno’s APIs,
the standard library is written in TypeScript, providing us with excellent
autocompletion suggestions and in - depth type information.

Let’s start by diving into the FileManager module as our first example.
Frequently, when working with Deno, you will require performing file manip-
ulation tasks such as reading, writing, and modifying files and directories.
The FileManager module simplifies these tasks, allowing developers to focus
on the logic of their applications without being tangled in the intricacies of
file operations.

Consider a situation where you need to read the content of a file and
filter out specific lines based on a given condition. Using the ‘readFileStr‘
function, you can easily fetch the content of a file as a string and perform
the desired transformations:

“‘typescript import { readFileStr } from ”https://deno.land/std/fs/mod.ts”;
async function processFile(filePath: string): Promise<void> { const data

= await readFileStr(filePath); const filteredLines = data.split(”n”).filter((line)
=> line.startsWith(”Deno”));

console.log(filteredLines.join(”n”)); }
processFile(”example.txt”); “‘
As simple as that, we were able to read a file and filter its content using

functions from the Deno standard library.
One of the standout aspects of Deno is its emphasis on security. The Per-

missions module within the standard library allows developers to granularly
manage and utilize the inherent permissions system provided by Deno.

In the following example, we will explore the use of the Permissions API
to request write access:

“‘typescript import { grant, Permissions, writeFileStr } from ”https://deno.land/std/permissions/mod.ts”;
async function requestPermissionAndWriteFile(filePath: string, con-

CHAPTER 3. CORE DENO MODULES AND UTILITIES 47

tent: string): Promise<void> { try { const granted = await grant({ name:
”write”, path: filePath }); if (granted) { await writeFileStr(filePath, con-
tent); console.log(‘Successfully wrote to ${filePath}‘); } } catch (error) {
console.error(”Permission denied.”, error); } }

requestPermissionAndWriteFile(”output.txt”, ”Hello Deno!”); “‘

In this example, we request permission to write to a file. If the permission
is granted, we proceed to write the data provided through ‘writeFileStr‘.
By incorporating the Permissions module, we ensure that our application
adheres to Deno’s security - first approach.

Now, imagine a scenario where you need to perform HTTP requests to
an API. With the Http module from the standard library, interacting with
APIs is easy and straightforward. The following example demonstrates how
to make a GET request to fetch the current weather data for a city:

“‘typescript import { getJson } from ”https://deno.land/std/http/mod.ts”;

async function fetchWeatherData(city: string): Promise<void> { const
apiKey = ”your api key”; const endpoint = ‘https://api.openweathermap.org/data/2.5/weather?q=${city}&appid=${apiKey}‘;

try { const response = await getJson(endpoint) as any; const temper-
ature = response.main.temp; console.log(‘Current temperature in ${city}:
${temperature}F‘); } catch (error) { console.error(”Error fetching weather
data: ”, error); } }

fetchWeatherData(”New York”); “‘

With just a few lines of code, we effortlessly obtained weather data using
the Http module.

As our exploration of Deno continues, we uncover more valuable resources
in its standard library. From Hashing and Cryptography to Text encodings,
you will find a key function to address your needs. With each module in
the Deno standard library, your TypeScript - fueled development experience
becomes deeper and more robust.

As we journey ahead, we carry with us an understanding of the power
and versatility of Deno’s Standard Library. It provides the fertile soil where
our applications take root and flourish, becoming more equipped to traverse
the challenges that lay ahead. So, keep your compass pointed forward and
your curiosity sharp as we set forth to discover more of Deno’s offerings.
The adventure has just begun.</void></void></void>

CHAPTER 3. CORE DENO MODULES AND UTILITIES 48

File and Directory Operations with ‘Deno‘ Global Object
and Standard Library Functions

As a software developer working with Deno, you will often need to interact
with the file system, managing files and directories with ease and efficiency.
The Deno runtime and standard library provide various powerful tools to
perform these operations with precision and security, ensuring that your
work follows the best practices and meets the highest standards of quality.

To begin working with files and directories in Deno, let us first understand
the primary mechanisms provided through the Deno global object and the
standard library functions. The Deno global object provides basic file system
- related functions that allow you to access, create, update and delete files
and directories, while the standard library focuses on high- level abstractions
and utility functions for more advanced use - cases.

First and foremost, you must remember that Deno enforces strict security
boundaries, ensuring that your application has explicit access to the file
system. To allow file system read or write operations, you will need to run
your Deno application with the ” - - allow - read” and/or ” - - allow - write”
flags, and optionally also provide a specific folder to narrow the access scope.
This precaution empowers you with fine-grained control over which portions
of the file system your application can interact with, enhancing security and
reducing accidental mishaps.

Consider an example where you would like to read the contents of a file
called ”example.txt”. To do this, you can use Deno’s built - in ”readTextFile”
function, as follows:

“‘ts const content = await Deno.readTextFile(”example.txt”); con-
sole.log(content); “‘

Remember to run your Deno application with the ” - - allow - read” flag
to enable the required file read access. The ”readTextFile” function reads
the file asynchronously, and returns the contents as a string, allowing you
to further process or manipulate the data as needed.

In addition to the ”readTextFile” function, Deno provides a wide variety
of low - level file APIs, such as ”open”, ”create”, ”read”, ”write”, ”rename”,
”remove”, and more. Using these functions, you can build highly customized
file manipulation routines tailored to your precise requirements. For instance,
to append new content to an existing file, you can use the ”open” and ”write”

CHAPTER 3. CORE DENO MODULES AND UTILITIES 49

functions as follows:
“‘ts const file = await Deno.open(”example.txt”, { create: true, write:

true, append: true }); await Deno.write(file.rid, new TextEncoder().encode(”nAppended
content”)); await Deno.close(file.rid); “‘

This example demonstrates how to open an existing file with the ”create”,
”write”, and ”append” mode options, and then write new content to the
file before closing it. Note that Deno uses resource IDs (rids) to uniquely
identify open file handles, which must be closed properly to prevent resource
leaks.

While low - level file APIs grant you excellent control over file operations,
they can be cumbersome to work with, especially when implementing
complex use - cases. As a solution, Deno’s standard library offers a suite
of high - level file and directory utilities that simplify your development
workflow while maintaining Deno’s strict security standards.

For example, the ”copy” function from the ”fs” module allows you to
copy a file or directory from one location to another with ease:

“‘ts import { copy } from ”https://deno.land/std@0.109.0/fs/mod.ts”;
await copy(”source.txt”, ”destination.txt”); “‘
Similarly, you can use other functions from the ”fs” module to perform

essential tasks, such as ”ensureDir” to create a directory if it does not already
exist, ”emptyDir” to delete all files and subfolders in a directory, and ”walk”
to traverse a directory tree and access individual files and directories for
further processing.

Working with files and directories in Deno is a delicate dance, steadily
guided by security, flexibility, and ease of use. The Deno runtime and
standard library equip you with both low - level and high - level tools to
perform these intricate maneuvers, allowing you to harness the full power of
your application while keeping a vigilant eye on security. As you continue to
explore the vast realm of Deno, you will master the art of file and directory
management, wielding these tools with confidence and precision.

Networking: Interacting with HTTP and TCP in Deno

At the heart of any network interaction is the HTTP protocol, a tried and
tested method of transferring hypertext over the internet. As a developer
using Deno, you have the opportunity to work directly with HTTP requests

CHAPTER 3. CORE DENO MODULES AND UTILITIES 50

and responses, building server applications that can process incoming data,
interact with other APIs, and return custom responses. Deno’s built - in
‘http‘ module allows you to create a server that listens for incoming requests
and processes them accordingly.

To demonstrate, let’s create a simple Deno HTTP server with TypeScript:
“‘typescript import { serve } from ”https://deno.land/std@0.116.0/http/server.ts”;
const server = serve({ port: 8000 });
console.log(”HTTP server running on http://localhost:8000”);
for await (const req of server) { req.respond({ body: ”Hello, Deno World!”

}); } “‘
In the example above, we imported the ‘serve‘ function from Deno’s

standard library to create an HTTP server. The server listens on port 8000
and responds with a simple greeting to all incoming requests.

Deno also supports working with TCP sockets directly, offering a lower
- level interface with fine - grained control over your server’s functionality.
This is particularly powerful for implementing custom protocols or building
real - time applications with long - lived connections. To illustrate how Deno
allows you to interact with TCP sockets, let’s create a simple echo server:

“‘typescript import { serve } from ”https://deno.land/std@0.116.0/net/server.ts”;
const server = serve({ port: 3000 });
console.log(”TCP echo server running on localhost:3000”);
for await (const conn of server) { (async () => { const buf = new

Uint8Array(1024); for await (const bytesRead of conn.read(buf)) { await
conn.write(buf.subarray(0, bytesRead)); } conn.close(); })(); } “‘

In this example, we created a TCP server that listens for incoming
connections on port 3000. Our server’s primary purpose is to echo the
received data back to the sender. This code showcases Deno’s ability to
interact with lower - level networking constructs, exposing APIs that allow
you to work with connections at a granular level.

Given the popularity of building microservices and modern APIs, the
ability to act as an HTTP client is crucial for many applications. Deno
provides this functionality through the Fetch API, a battle - tested web
standard that has made interacting with HTTP servers incredibly straight-
forward for frontend developers. By making Fetch available out -of - the -box,
Deno’s developers ensure that you can make requests to external APIs and
download resources with ease, all while having the familiarity and reliability

CHAPTER 3. CORE DENO MODULES AND UTILITIES 51

offered by the browser.
As an example, let’s retrieve the Mars weather report from NASA’s

InSight rover using Deno and the Fetch API:
“‘typescript const response = await fetch(”https://api.nasa.gov/insight weather/?api key=DEMO KEY&feedtype=json&ver=1.0”,

);
if (response.ok) { const data = await response.json(); console.log(”Mars

weather report:”, data); } else { console.error(”Error fetching data:”, re-
sponse.status); } “‘

In the example above, we used Deno’s built - in Fetch API to query
NASA’s API for the latest Martian weather report. This simple demonstra-
tion shows how the Fetch API provides a powerful, familiar way to interact
with external web services, bringing various external resources into your
application.

Our journey through Deno’s networking capabilities has revealed its
diverse strengths in handling HTTP and TCP protocols. By leveraging the
Fetch API, Deno allows developers to transparently interact with external
web services, bringing a wide array of possibilities for data consumption
and processing. Furthermore, Deno’s built - in networking capabilities
empower developers to implement web servers and real - time applications
with unmatched security and flexibility. As we continue to explore the
boundless realm of Deno features and modules, we will witness how Deno’s
networking strengths combine with its robust TypeScript support to create
a unique ecosystem that both inspires and empowers developers worldwide.

Dealing with Processes and Signals: The ‘Deno.run‘ and
‘Deno.signal‘ APIs

As a starting point in our exploration, let’s dissect ‘Deno.run‘. At its core,
‘Deno.run‘ is a versatile function that allows you to spawn, manage, and
control external executables or subprocesses. In contrast to systems like
Node.js, Deno does not rely on an external process library or module, making
it more lightweight and efficient. The traditional JavaScript standards, such
as ‘exec‘, do not adhere to the modern secured nature of applications, whereas
‘Deno.run‘ offers the necessary flexibility and power without compromising
the security. To illustrate the power of ‘Deno.run‘, imagine the following
common scenario: invoking a build script or interacting with third - party

CHAPTER 3. CORE DENO MODULES AND UTILITIES 52

command line tools.
“‘typescript const process = Deno.run({ cmd: [”echo”, ”Hello, Deno!”],

});
const status = await process.status(); console.log(‘Process exited with

status code: ${status.code}‘);
process.close(); “‘
It’s important to note that running this code snippet requires the ‘ - -

allow - run‘ permission, as Deno emphasizes security and requires explicit
consent to execute subprocesses. The simplicity and clarity of the code is a
testament to the elegance of the Deno API, allowing developers to quickly
grasp its essence and utilize it to its full potential.

Now, let’s delve into the ‘Deno.signal‘ API. In the realm of process man-
agement, inter - process communication (IPC) is often facilitated through
signals. Signals are fundamental to modern POSIX operating systems, pro-
viding a reliable method of communication between processes. Recognizing
the importance of signals, the Deno API offers a unified and robust interface
for handling signals, encapsulated within the ‘Deno.signal‘ function.

The ‘Deno.signal‘ function accepts a signal number as its argument, and
returns an asynchronous iterator, which can be used to create an event -
driven, reactive mechanism to handle signals. As an example, consider the
following code snippet, which sets up a responsive handler for incoming
‘SIGINT‘ signals, gracefully shutting down the application when a user
presses ‘Ctrl+C‘:

“‘typescript async function handleSignal(signal: Deno.Signal) { for await
(const of signal) { console.log(”Process interrupted. Shutting down grace-
fully ”); Deno.exit(0); } }

const sigint = Deno.signal(Deno.Signal.SIGINT); handleSignal(sigint);
“‘

This elegant, asynchronous design makes it incredibly simple and efficient
to handle various types of signals, while maintaining the responsiveness and
stability of the application.

One of the major strengths of Deno lies within its robust API design,
allowing developers to master the intricacies of process and signal man-
agement. Mastering these tools and techniques provides engineers with
an invaluable toolset for creating highly responsive, efficient, and perfor-
mant applications that can seamlessly navigate the minefield of concurrent

CHAPTER 3. CORE DENO MODULES AND UTILITIES 53

processes and executables.
As your Deno applications continue to evolve, taking advantage of these

powerful APIs becomes crucial. It’s critical to understand and appreciate the
permission - driven, secured nature of these APIs and adapt your codebase
accordingly, ensuring a smooth blend of safety and efficiency. Embrace the
versatility and potential of the ‘Deno.run‘ and ‘Deno.signal‘ APIs, trans-
forming your applications into well - orchestrated symphonies of processes
and signals, poised to conquer the modern software landscape.

Managing Permissions and Secure Coding in Core Deno
Modules

When reflecting upon the unique aspects of Deno as a runtime environment,
one cannot overlook the emphasis on providing enhanced security - especially
when compared to its sibling, Node.js. This focus on security serves as one
of the critical driving forces behind Deno’s rapid adoption and its repute as
a promising alternative to Node.js. To develop secure applications utilizing
Deno, it is crucial to understand and effectively manage permissions and
apply secure coding practices in core Deno modules.

Managing permissions is an integral part of building secure applications
in Deno. By default, Deno enforces a strict security model, disallowing
access to the file system, network, and other system - level operations, unless
explicitly granted by the developer. To allow an operation, permissions
are set using flags when invoking Deno scripts. For example, allowing read
access to the file system is as simple as passing the ‘ - - allow - read‘ flag:

“‘ deno run - - allow - read ./example.ts “‘
While this level of granularity in permissions is admirable, sometimes

it may be necessary to allow access only to specific resources, instead of
globally permitting an operation. This need for more granular permission
control can be achieved using the ‘Deno.permissions‘ API. The API provides
helper functions to request, revoke, and query permissions at runtime. Let’s
consider an example where a module reads sensitive data from a file, and
we want to restrict access to only that file:

“‘typescript async function readSensitiveData(filePath: string) { const
permissionStatus = await Deno.permissions.request({ name: ”read”, path:
filePath });

CHAPTER 3. CORE DENO MODULES AND UTILITIES 54

if (permissionStatus.state === ”granted”) { const data = await Deno.readTextFile(filePath);
console.log(data); } else { console.error(”Permission denied to read the file.”);
} }

readSensitiveData(”./sensitive - data.txt”); “‘
In the example above, we use the ‘Deno.permissions.request‘ method

to request read permission for a specific file path, rather than relying on a
global ‘ - - allow - read‘ flag. This code would work only if Deno was invoked
with the ‘ - - unstable‘ flag, as the ‘Deno.permissions‘ API is still considered
experimental and subject to change.

Next, we will explore secure coding practices in core Deno modules.
One of the primary motivations behind Deno’s inception was to address
the shortcomings of the Node.js module system, specifically concerning
security and the ease with which malicious modules could potentially wreak
havoc. Deno seeks to rectify these issues by providing built - in utilities and
native TypeScript support, which encourage developers to write safe and
maintainable code.

An essential aspect of secure coding in Deno is the proper use of Type-
Script types and interfaces. Explicit typing allows the compiler to identify
potential security vulnerabilities at compile time, thus preventing runtime
exploitation. For instance, consider a case where we accept user input to
create a new directory:

“‘typescript async function createDirectory(name: string) { if (name)
{ await Deno.mkdir(name); console.log(‘Directory ”${name}” created.‘); }
else { console.error(”Invalid directory name.”); } }

const userInput = ”new - directory”; createDirectory(userInput); “‘
Here, the ‘createDirectory‘ function expects a string and relies on a

simple truthy check to validate the input. This approach might result
in unsafe values causing unintended behavior. By leveraging TypeScript
and harnessing the power of type checking, we could replace the runtime
validation with a more robust, type - specific approach:

“‘typescript type DirectoryName = string & { readonly brand:
unique symbol };

function isDirectoryName(input: string): input is DirectoryName { //
Perform thorough input validation and sanitization here return !!input; }

async function createDirectory(name: DirectoryName) { await Deno.mkdir(name);
console.log(‘Directory ”${name}” created.‘); }

CHAPTER 3. CORE DENO MODULES AND UTILITIES 55

const userInput = ”new - directory”;
if (isDirectoryName(userInput)) { createDirectory(userInput); } else {

console.error(”Invalid directory name.”); } “‘
In the improved example, we define a unique type ‘DirectoryName‘ that

validates user input using a custom type guard (‘isDirectoryName‘). This
implementation allows the compiler to prevent passing unchecked user input
to the ‘createDirectory‘ function, and reduces the possibility of runtime
vulnerabilities arising from type coercion or other unexpected behavior.

Lastly, it is pertinent to mention the use of secure Deno APIs for cryp-
tography and encryption. As Deno aims to become a browser - compatible
runtime, it exposes many Web APIs, such as ‘window.crypto.subtle‘, which
provides a set of cryptographic primitives for generating keys, signing mes-
sages, and encrypting data. Unlike Node.js, which requires developers to
import specific modules like ‘crypto‘ or ‘bcrypt‘, Deno’s built - in Web APIs
empower developers to write secure code without third - party dependencies
or managing OS - specific cryptographic bindings.

In closing, Deno shines as a secure and developer - friendly platform by
enabling the thoughtful management of permissions and facilitating secure
coding practices through core APIs and TypeScript types. As developers
strive to create robust, secure applications, the Deno ecosystem, with its
earnest focus on security, is an ideal environment to architect the software
of the future. The resolute pursuit of enhanced security in Deno not only
signifies the fundamental ethos of the runtime but also sets the stage for a
bright and secure future of web application development.

Implementing Custom Streams and Transformers via
Deno Reader and Writer Interfaces

Streams are ubiquitous in modern software development. They represent a
continuous sequence of data elements, mimicking the flow of information
within a given context. Streams serve as the cornerstone of data process-
ing, allowing programmers to define complex pipelines for processing and
transforming data effectively.

Streams in Deno can be viewed as essential building blocks that underlie
many fundamental modules and libraries. Let us have a look at Deno’s
Reader and Writer interfaces. These interfaces allow you to create custom

CHAPTER 3. CORE DENO MODULES AND UTILITIES 56

behaviors while conforming to the expected patterns for data processing
across various parts of the runtime.

“‘typescript interface Reader { read(p: Uint8Array): Promise<number
null=”” =””>; }

interface Writer { write(p: Uint8Array): Promise<number>; } “‘
A Reader is an interface that exhibits a single read function, which

accepts a Uint8Array (a typed array of 8 - bit unsigned integers) and returns
a Promise resolving to the number of bytes read or null, indicating the
end of the stream. Similarly, the Writer interface exhibits a write function,
which accepts a Uint8Array and returns a Promise resolving to the number
of bytes written.

Let’s create a simple Reader implementation, which reads input from a
given string:

“‘typescript class StringReader implements Deno.Reader { construc-
tor(private text: string) { }

async read(p: Uint8Array): Promise<number null=”” =””> { if (this.text.length
=== 0) { return null; }

const bytesRead = Math.min(p.length, this.text.length); const slice =
this.text.slice(0, bytesRead);

for (let i = 0; i < bytesRead; i++) { p[i] = slice.charCodeAt(i); }
this.text = this.text.slice(bytesRead); return bytesRead; } } “‘
Now, let’s implement a custom Writer that writes the read input into

an ArrayBuffer:
“‘typescript class ArrayBufferWriter implements Deno.Writer { construc-

tor(private buffer: ArrayBuffer) { }
async write(p: Uint8Array): Promise<number> { const newBuffer

= new Uint8Array(this.buffer.byteLength + p.length); newBuffer.set(new
Uint8Array(this.buffer), 0); newBuffer.set(p, this.buffer.byteLength); this.buffer
= newBuffer.buffer;

return p.length; } } “‘
You may notice that the custom Reader and Writer implementations

provided above are relatively simplistic. However, they demonstrate that
creating custom streams in Deno involves implementing interfaces rather
than inheriting complex classes filled with myriad methods, as in Node.js.

To support complex data processing scenarios further, Deno provides
a utility function called ‘copy‘ that allows copying data from a Reader to

CHAPTER 3. CORE DENO MODULES AND UTILITIES 57

a Writer seamlessly. We might use this function to connect our custom
StringReader to the ArrayBufferWriter and thus copy the input text into
the ArrayBuffer:

“‘typescript import { copy } from ”https://deno.land/std@1.16.1/io/mod.ts”;
async function main() { const inputText = ”Hello, Deno!”; const stringReader

= new StringReader(inputText); const arrayBufferWriter = new Array-
BufferWriter(new ArrayBuffer(0));

const bytesCopied = await copy(stringReader, arrayBufferWriter); con-
sole.log(‘Copied ${bytesCopied} bytes:‘, new TextDecoder().decode(arrayBufferWriter.buffer));
}

await main().Catch((e) => console.log(‘Error: ‘, e.message)); “‘
Running this code will not only print the number of bytes copied but

also copy the input string from the custom StringReader to the ArrayBuffer-
Writer.

With the power of Deno’s Reader and Writer interfaces, you can de-
velop sophisticated data processing pipelines that suit the specific require-
ments of your application. This approach provides a flexible and extensible
foundation for building high - performing, secure, and easily maintainable
applications in Deno, compared to traditional Node.js streams. </num-
ber></number></number></number>

Timers, Delays, and Asynchronous Utilities in Deno

Let’s start by examining the fundamental asynchronous operation, delays.
Deno replicates the well - known ‘setTimeout‘ and ‘setInterval‘ functions
from the browser’s and Node.js’s environment, enabling developers to utilize
these familiar tools. However, Deno introduces a more succinct utility for
creating delays - the ‘delay‘ function, part of Deno’s standard library.

Here’s an example of creating a simple delay using the ‘delay‘ function:
“‘typescript import { delay } from ”https://deno.land/std@0.103.0/async/delay.ts”;
await delay(5000); console.log(”5 seconds have passed!”); “‘
In this example, the ‘delay‘ function produces a promise that resolves

after the specified amount of time (in milliseconds). We use the ‘await‘
keyword to pause script execution until 5 seconds have passed, after which
the subsequent console log statement is executed.

Next, let’s dive into the heart of asynchronous code management in Deno

CHAPTER 3. CORE DENO MODULES AND UTILITIES 58

- timers. Deno’s runtime environment supports the familiar ‘setTimeout‘ and
‘setInterval‘ functions analogous to the browser. The only notable difference
is that these functions return an object containing a numeric identifier for
the timer, rather than the timer id directly.

Here’s an example that demonstrates the use of ‘setTimeout‘ with Deno:
“‘typescript setTimeout(() => { console.log(”Executed after 3 sec-

onds”); }, 3000);
console.log(”Executed immediately”); “‘
In this example, the first ‘console.log‘ statement is executed immediately,

while the second is executed after a delay of 3 seconds. This demonstrates
how setTimeout allows for non - blocking code execution.

Similarly, ‘setInterval‘ can be utilized to run a specific task repeatedly,
with a fixed interval of time in between. Consider the example below:

“‘typescript let counter = 1;
const intervalId = setInterval(() => { console.log(‘Executed ${counter}

times‘); counter++;
if (counter === 4) { clearInterval(intervalId); } }, 2000); “‘
This code snippet demonstrates a simple use case for ‘setInterval‘, logging

a message every 2 seconds while keeping track of the number of executions.
The ‘clearInterval‘ function is used to stop the repeated execution after
three iterations.

Building upon these capabilities, Deno’s standard library offers a collec-
tion of asynchronous utilities designed to augment the basic timer functions.
A noteworthy utility is the ‘deferred‘ function, which implements a pattern
commonly known as ”deferred promises.” The ‘deferred‘ function creates an
object with an associated promise and exposes methods to explicitly resolve
or reject it.

The following example demonstrates the use of ‘deferred‘ to create a
custom delay function:

“‘typescript import { deferred } from ”https://deno.land/std@0.103.0/async/deferred.ts”;
function customDelay(ms: number) { const { promise, resolve } =

deferred<void>(); setTimeout(() => { resolve(); }, ms); return promise;
}

await customDelay(4000); console.log(”4 seconds have passed!”); “‘
This custom implementation achieves the same functionality as the

‘delay‘ function from the standard library. Using the ‘deferred‘ function,

CHAPTER 3. CORE DENO MODULES AND UTILITIES 59

you can create more intricate asynchronous patterns tailored to your needs.
</void>

Unicode and Text Encoding Handling in Deno Applica-
tions

One of the key features of Deno is its built - in support for TextEncoder and
TextDecoder APIs which are based on the Encoding Living Standard. These
APIs provide a straightforward way to encode and decode text between
JavaScript strings (which use Unicode representation) and various binary
formats such as UTF - 8, UTF - 16, and others. The usage of TextEncoder
and TextDecoder is quite simple. Let’s take a look at an example of encoding
and decoding a text using the UTF - 8 format:

“‘typescript const encoder = new TextEncoder(); const decoder = new
TextDecoder(”utf - 8”);

const text = ”Hello, Deno!”; const encodedText = encoder.encode(text);
console.log(encodedText); // Uint8Array(11) [72, 101, 108, 108, 111, 44, 32,
68, 101, 110, 111, 33]

const decodedText = decoder.decode(encodedText); console.log(decodedText);
// Hello, Deno! “‘

As seen in the example, TextEncoder’s ‘encode‘ method takes a string
as input and returns a Uint8Array containing the encoded binary data.
Similarly, TextDecoder’s ‘decode‘ method takes a Uint8Array and returns
the original string.

Now, let’s suppose you need to handle a more complex Unicode scenario
in your Deno application. Imagine you need to process a string containing
emojis, which are part of the Unicode standard. In this case, it is essential
to understand the concept of Unicode code points and JavaScript’s string
handling capabilities.

JavaScript strings are stored as a sequence of 16 - bit unsigned integer
values, also called UTF - 16 code units. However, Unicode characters (code
points) can expand beyond the 16 - bit limit, which requires two code units
for representation. These pairs of code units are called ”surrogate pairs”.
Emojis, for example, fall into this category.

Let’s use an example to illustrate this concept and see how to handle
Unicode characters that require surrogate pairs in JavaScript strings:

CHAPTER 3. CORE DENO MODULES AND UTILITIES 60

“‘typescript const emoji = ””; console.log(emoji.length); // 2 con-
sole.log(emoji.codePointAt(0)); // 128515 “‘

Notice that when using the ‘length‘ property of the string containing
the emoji, it returns 2 instead of 1. This is because the emoji character
consists of a surrogate pair, taking up two UTF - 16 code units. Using
the ‘codePointAt‘ method, we can retrieve the correct Unicode code point,
regardless of whether the character is part of a surrogate pair or not.

Deno also provides a standard library module, ‘encoding‘, which can be
beneficial when dealing with complex text encoding scenarios. ‘deno std/encoding‘
offers several encoding and decoding functions for different formats such as
UTF - 16, UTF - 32, and more, providing more options and flexibility than
the built - in TextEncoder and TextDecoder APIs.

Below is an example using Deno’s ‘encoding‘ module to convert a Unicode
code point to a UTF - 16 surrogate pair:

“‘typescript import * as encoding from ”https://deno.land/std@0.123.0/encoding/utf16.ts”;
const codePoint = 128515; // Emoji code point const utf16Pair =

encoding.encodeInto(codePoint); console.log(utf16Pair); // [55357, 56835]
“‘

As we continue our journey in understanding Deno’s capabilities, we will
plunge into the depths of managing environment variables and configuration
in Deno projects. This will further enhance our skills in crafting efficient,
maintainable, and secure applications using Deno as the runtime environ-
ment. The seamless marriage of Deno with Unicode and text encoding is
just a glimpse of the powerful capabilities that lie ahead.

Environment Variables and Configuration Management
in Deno Projects

Setting environment variables in Deno follows the same principles as other
programming environments such as Node.js. Let’s start by examining the
injection process. The most common way to set environment variables is
through the command line or a script before executing a Deno program:

“‘ $ export API KEY=”your - api - key” $ deno run your - app.ts “‘
On Windows, the ‘set‘ command is used instead:
“‘ > set API KEY=”your - api - key” > deno run your - app.ts “‘
In Deno, you access environment variables using the ‘Deno.env‘ object.

CHAPTER 3. CORE DENO MODULES AND UTILITIES 61

Before that, you must grant the ‘ - - allow - env‘ flag to your script; otherwise,
Deno’s security model will prevent access. Here’s an example of accessing
an environment variable within your Deno code:

“‘typescript // app.ts console.log(‘API KEY: ${Deno.env.get(”API KEY”)}‘);
“‘

To run the code above, use ‘deno run - - allow - env app.ts‘. The ‘ - - allow
- env‘ flag grants permission to access environment variables set on your
system.

For managing configurations and settings, JSON files are popular among
developers. Deno can natively parse JSON files, allowing for a simple way
to manage configurations. Consider the following example where we store
application configurations in a JSON file:

“‘json // config.json { ”apiUrl”: ”https://api.example.com”, ”timeout”:
3000 } “‘

To load the configuration in your Deno project, use the ‘Deno.readTextFileSync‘
function:

“‘typescript // app.ts const config = JSON.parse(Deno.readTextFileSync(”config.json”));
console.log(‘API URL: ${config.apiUrl}‘); console.log(‘Timeout: ${config.timeout}‘);
“‘

Although this approach is reasonable, it does not enable environment -
specific configurations out - of - the - box. To support different environments
without duplicating code, one efficient approach to conditionally import
environment - specific configurations using import and export statements:

“‘typescript // config.ts let config;
if (Deno.env.get(”ENV”) === ”production”) { config = { apiUrl:

”https://prod.api.example.com”, timeout: 5000, }; } else { config = {
apiUrl: ”https://dev.api.example.com”, timeout: 3000, }; }

export default config; “‘
This configuration approach allows developers to switch between environ-

ments dynamically, changing the environment variable ‘ENV‘ accordingly.
A more advanced approach could utilize decorators or require statements to
conditionally import configurations based on environment variables.

To blend the best of both worlds - environment variables and configura-
tion files - consider ‘dotenv‘ module for Deno from deno.land/x:

“‘bash $ deno install -A --unstable -n dotenv https://deno.land/x/dotenv/mod.ts
“‘

CHAPTER 3. CORE DENO MODULES AND UTILITIES 62

This module enables developers to store the configuration in a ‘.env‘
file, adhering to the ”Twelve - Factor App” methodology (<https: 12fac-
tor.net=””></https:>). Example of a ‘.env‘ file:

“‘ API KEY=my - secret - api - key AP URL=https://api.example.com
TIMEOUT=3000 “‘

With the ‘dotenv‘ module, you can load environment variables from a
‘.env‘ file easily:

“‘typescript // app.ts import ”https://deno.land/x/dotenv/load.ts”;
console.log(Deno.env.get(”API KEY”)); console.log(Deno.env.get(”API URL”));

console.log(Deno.env.get(”TIMEOUT”)); “‘
This approach allows you to separate different configurations across ‘.env‘

files such as ‘.env.dev‘, ‘.env.prod‘, etc., and load the appropriate one based
on the current environment.

Whichever way you choose to manage your configurations, remember
the following best practices:

1. Never commit sensitive or environment-dependent information to your
version control system. Always keep these values in environment variables
or configuration files that are ignored in version control. 2. Maintain
a clear separation between application logic and configuration details to
avoid entangling the codebase and maintainability problems. 3. Employ a
consistent strategy for managing and accessing configurations across your
entire project.

When managing configurations and environment variables in Deno, de-
velopers enjoy the versatility of stock TypeScript options combined with
external modules to accommodate various project requirements. This flex-
ibility positions Deno as a growing contender in the world of server - side
development, facilitating customizable development experiences and scalable
application design principles.

Utilizing Web APIs Directly in Deno: Fetch, Crypto,
and More

To kick things off, let’s delve into the Fetch API. Fetch is a built - in web API
used for making network requests and handling responses. It offers a more
streamlined and modern alternative to XMLHttpRequest, boasting improved
performance and error handling. In Deno, leveraging the Fetch API is as

CHAPTER 3. CORE DENO MODULES AND UTILITIES 63

simple as using the ‘fetch()‘ function. Here’s an example demonstrating a
basic GET request:

“‘typescript (async () => { const response = await fetch(”https://jsonplaceholder.typicode.com/todos/1”);
const data = await response.json(); console.log(data); })(); “‘

This code snippet demonstrates an asynchronous call to an API endpoint
using ‘fetch()‘. Upon receiving a successful response, the JSON data is parsed
and logged to the console. It’s important to note that working with fetch
requires the ‘ - - allow - net‘ flag during runtime, as Deno strictly enforces
network security.

Next, let’s turn our attention to the Crypto API. This web API provides
various cryptographic algorithms, enabling developers to secure their ap-
plications with robust encryption and hashing techniques. Although Deno
does not currently support all of Crypto’s capabilities, its ‘SubtleCrypto‘
subset of functions is readily available. ‘SubtleCrypto‘ includes methods for
encryption, decryption, and hashing, among others.

An example of utilizing the Crypto API in Deno can be seen through
the creation of a SHA - 256 hash of a given input:

“‘typescript async function createHash(input: string): Promise<string>

{ const encoder = new TextEncoder(); const data = encoder.encode(input);
const hashBuffer = await crypto.subtle.digest(”SHA - 256”, data); const
hashArray = Array.from(new Uint8Array(hashBuffer)); const hashHex =
hashArray.map(b => b.toString(16).padStart(2, ’0’)).join(”);

return hashHex; }
(async () => { const input = ”Hello, Deno!”; const hash = await

createHash(input); console.log(’Hash:’, hash); })(); “‘
This function demonstrates how to create a SHA - 256 hash of a given

input string using the ‘crypto.subtle.digest()‘ method. Implementing this
kind of functionality directly in a Deno application, without resorting to
third - party libraries, offers developers a great deal of control and flexibility.

Now that we’ve discussed Fetch and Crypto, it’s worth mentioning
that Deno boasts compatibility with a wide range of other web APIs.
Examples include the ‘requestAnimationFrame‘ API, useful for creating
smooth animations; the ‘WebRTC‘ API, which facilitates peer - to - peer
communication between browsers or Deno processes; and even APIs like
‘localStorage‘ or ‘IndexedDB‘ that, while traditionally reserved for browser
usage, can still prove useful within the context of a Deno application.

CHAPTER 3. CORE DENO MODULES AND UTILITIES 64

In summary, Deno’s support for web APIs directly within applications
represents another step forward in the simplification and unification of
web development. By embracing core web APIs such as Fetch and Crypto,
developers can avoid unnecessary dependencies and reduce their code’s
complexity. Additionally, with Deno’s ongoing evolution and growth, it is
likely that even more powerful and useful web APIs will become available
to developers in the near future, further expanding the exciting possibilities
that await the savvy Deno developer.

As we continue our journey through the landscape of Deno development,
you will discover more of the essential tools and techniques that make
working with Deno not only seamless but also enjoyable. With each new
concept and API, the power at your fingertips continues to expand, opening
doors to new innovations and ways to create robust, secure, and cutting -
edge applications.</string>

Chapter 4

Deno Security and
Permissions Handling

In the modern era of computing, security has become a significant concern.
The age of interconnectedness has led to numerous advancements in technol-
ogy, but it has also given rise to new threats. Securing software and ensuring
that only authorized processes can access sensitive data is a top priority for
software engineers worldwide. Here, we delve into Deno’s security model,
with a focus on its unique approach to handling permissions, and examine
how it implements a robust and flexible system to ensure the safety and
privacy of your applications.

One of the most striking differences between Deno and its predecessor
Node.js is the attention to security. Without a doubt, Node.js revolution-
ized the landscape of server - side JavaScript development, but it did not
come without criticism, and among the most significant concerns raised by
developers was the lack of stringent access controls by default. Any code
executed in a Node.js environment has full access to the underlying system’s
resources, which, given the right environment, can be exploited.

Taking this feedback into account, Deno opts for a highly secure default.
A Deno application runs sandboxed, meaning it has no access to the host
file system, network, or environment variables unless explicitly granted.
Developers define permissions using command - line flags, which provides
granular control over their applications’ capabilities, minimizing the surface
area for potential vulnerabilities.

Let’s look at an example. Suppose we are creating a simple application

65

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 66

that reads a file and prints its contents to the console. Here’s what the code
would look like:

“‘ts const fileName = Deno.args[0]; const fileContent = await Deno.readTextFile(fileName);
console.log(fileContent); “‘

To run this application in Deno, we need to provide the ‘ - - allow - read‘
flag when executing it:

“‘ deno run - - allow - read myFileReader.ts file.txt “‘
Without the ‘ - - allow - read‘ flag, Deno will refuse to run the application

and throw a permission denied error. This permission requirement may add
extra overhead for the developers compared to Node.js but provides safety
assurance since each system interaction must be explicitly allowed. This
restriction prevents the risk of rogue code causing unintended side effects or
accessing sensitive information on the host machine.

Deno’s permissions model goes beyond basic flags and allows developers
to specify the exact paths that can be accessed. For example, the following
command restricts the script’s read access to the ‘/data/‘ directory:

“‘ deno run - - allow - read=/data/ myFileReader.ts data/file.txt “‘
Not only can we restrict read and write access to specific directories, but

we can also control the permissions for network communication, subprocess
execution, and environment variable access. As an example, to allow a
script to make outbound network requests but only to example.com, the
command would be:

“‘ deno run - - allow - net=example.com myHttpClient.ts “‘
While Deno enforces strict permissions by default, developers can dis-

able these restrictions in certain situations, such as during development or
debugging, using the ‘ - - unstable‘ flag. Disabling security features should
be done with caution and never in a production environment, as it may
introduce security vulnerabilities.

But what if the application requires multiple permissions? Deno caters
to this with granularity. Continuing with the previous example, assume we
need to send the file content to an API. Our new command would look like
this:

“‘ deno run - - allow - read=/data/ - - allow - net=example.com myInte-
gration.ts data/file.txt “‘

Deno’s permission handling does not stop at the command line. The Deno
API also provides run - time permission management, allowing developers to

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 67

query, grant, and revoke permissions programmatically. The run - time API
enables use cases such as supporting user - defined configurations, requesting
permission escalations, and more robust error messages.

There is elegance and power in Deno’s permission-focused security model.
It forces developers to be intentional and specific about their applications’
requirements, driving security to the forefront of their design process. By
embracing a secure - by - default approach, Deno promotes safer software
development practices and challenges developers to think critically about
the implications of the code they write.

Introduction to Deno Security and Permission Model

Just as a dependable guard keeps watch over a castle’s gates, security is
a key aspect of any modern, robust, and reliable web application. In the
realm of Deno, the permission model plays a crucial role in ensuring the
safety of applications, acting as its dutiful guardian. One of Deno’s defining
characteristics, as a runtime environment built to surpass the shortcomings
of Node.js, is the emphasis it places on addressing and reinforcing the
security concerns of JavaScript - based applications.

At the heart of Deno’s permission model, we find the principle of least
privilege, which is employed by default. This means that, unlike Node.js,
where potentially risky access to system resources is a given, Deno appli-
cations are granted the least possible access privileges by default. Web
developers must explicitly request additional permissions when needed,
ensuring a cautious and conscientious approach to resource access.

Such an approach necessitates the adoption of permission flags, which
allow developers to harness the power of Deno’s granular permission control
system. These flags are used when running a Deno application and call
attention to the specific system resources to which the application requires
access. For instance, if an application requires network access, the ’ - -
allow - net’ flag must be used when executing the application. Consequently,
malicious or unintended operations are prevented, and the application’s
security is enhanced.

Let us take a practical example to illustrate the fundamental concepts
of this permission model. Suppose you were tasked with devising an ardent
sentry protocol for a stately palace. It would be unwise to allow your guards

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 68

access to every key in the palace without prudent assessment - even the
most trustworthy among them may accidentally open a restricted room
or unwittingly expose themselves to danger. In the same vein, the Deno
permission model allows you to grant applications specific rights to access
resources judiciously and only when necessary.

However, the wisdom of this model does not end there. As web applica-
tion guardians, the developers using Deno’s permission model can set allow -
lists; these restrict access to individual, pre - approved resources rather than
the entire category of resources represented by a flag. This capacity further
refines the control over resource access and alleviates security risks.

Manifested in its concept, design, and implementation, Deno’s security
and permission model is a steadfast protectress. However, as with any novel
technology, the true power of this model can only be propagated when
those who wield it practice responsibility and prudence. Best practices
dictate that Deno developers always lean on the principle of least privilege,
deliberately granting permissions only when required and making airtight
allow - lists to curtail any accidental access to sensitive resources.

In embracing Deno’s permission model with diligence, developers can
ensure that their applications are equipped with guards that never slumber,
never falter, and never compromise the security of their keep. This not only
helps create more secure web applications but fosters meaningful awareness
of the potential risks associated with improper resource management in
today’s digital landscape.

Understanding the Basic Permission Flags in Deno

In an era of heightened security concerns, the Deno runtime offers an im-
portant advantage over Node.js - an enhanced security model by default.
By providing granular control of permissions, developers can exercise con-
sistent authority over critical resources like the file system, network, and
environment variables. To gain the full advantage of this compelling Deno
feature, understanding the basic permission flags is an essential first step
toward building secure and robust Deno applications.

As you might already know, Deno is a secure -by -default runtime, mean-
ing that unless specifically granted, the program is restricted from accessing
valuable system resources. Deno controls access by using permission flags

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 69

that can be set during the launch of a script from the command line. It is
crucial to consider that Deno’s permission system operates at runtime, not
during the build or development. The permissions can be thought of like a
lock on a door - you, as the developer, hold the keys and can decide what
access to grant when starting your server or application.

For an overview, let’s examine the assortment of permission flags and
their role:

1. ‘ - - allow- read‘: This flag allows the script to read files and directories
from the specified paths. It can be assigned with or without an argument.
If no argument is passed, it grants full access to the file system. * Example:
‘deno run - - allow - read=/tmp,/home/someuser main.ts‘

2. ‘ - - allow - write‘: This flag permits the script to write files and alter
directories within the declared paths. Similar to ‘ - - allow - read‘, it can
be used with or without an argument. * Example: ‘deno run - - allow -
write=/var/log main.ts‘

3. ‘ - - allow - net‘: This flag governs the program’s network access
privileges. It can be employed with or without an argument. If no argument
is declared, it allows unrestricted access. Alternatively, a list of domain
names, IP addresses, or network masks can be specified. * Example: ‘deno
run - - allow - net=api.example.com,localhost:8080 main.ts‘

4. ‘ - - allow - env‘: This flag allows access to the environment variables.
It is an all - or - nothing: when specified, it grants access to all variables.
Otherwise, they remain inaccessible to the script. * Example: ‘deno run - -
allow - env main.ts‘

5. ‘ - - allow - plugin‘: This flag enables access to loading Deno plugins,
a powerful but potentially risky feature. It is generally discouraged to use
this unless working with well - trusted and tested plugins. * Example: ‘deno
run - - allow - plugin main.ts‘

6. ‘ - - allow - run‘: This flag permits the ability to spawn subprocesses
via the ‘Deno.run‘ API. It can be leveraged with or without an argument.
If no argument is specified, any subprocess can be spawned. Alternatively,
a list of executable names can be provided. * Example: ‘deno run - - allow -
run=git,ls main.ts‘

Understanding these permission flags is vital, as they afford the security
that differentiates Deno from other runtime environments like Node.js.
Learning to harness these flags enables developers to construct applications

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 70

with explicitly defined permissions, preventing security vulnerabilities and
enhancing overall code quality.

As an example, imagine creating a Deno application that needs to read
a configuration file from the filesystem and fetch data from a specific REST
API. The application should not, however, write to the file system or expose
environment variables. To achieve this precise balance, developers can
configure permission flags, like so:

“‘ deno run - - allow - read=config.json - - allow - net=api.example.com
app.ts “‘

Notice the deliberate omission of other permissions (write, environment),
which corresponds with the specific requirements of the application. Deno’s
permission model uniquely empowers developers to take full control of their
software’s access.

With a solid grasp of Deno’s basic permission flags, developers will unlock
the full potential of this advanced runtime system. Safe, secure, tailored
applications can be built, instilling confidence in their resilience even as
security threats continue to evolve. However, passing permissions manually
can become cumbersome at times, which is where learning more about
granular permission control, allow - lists, and deny - lists can streamline the
development experience. As we peer further into Deno development, we will
encounter various strategies and best practices to bolster our applications’
security profiles, maintaining the promise of safety while embracing the
power of Deno’s unparalleled capabilities.

Granular Permission Control with Allow - List and Deny
- List

To begin, it is important to understand the rationale behind Deno’s focus
on security. With Node.js, there is a potential for insecure code or third -
party modules to access the broader system, given that, by default, Node.js
projects are granted access to the file system, network, and other system
resources. Deno was designed to flip the script, implementing a permissions
model that is secure by default - meaning that projects do not have access
to any resources and must explicitly enable permissions as needed.

The first line of defense in Deno is its basic permission flags. These flags
can be set when running a Deno script using the command line, enabling

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 71

access to the file system, network, and more. However, the true power
of Deno’s permission system is unlocked when combined with granular
permission control, which includes allow - list and deny - list techniques.

Allow - lists are predicated on the idea that specific access rights must
be granted to every resource or operation. In other words, the application’s
codebase must explicitly enumerate every resource it wants to access or
modify. Deny - lists, on the other hand, operate on the inverse principle,
explicitly blocking access to certain resources or behaviors, while providing
access by default to everything else.

Let us now explore a practical example that demonstrates the usage and
benefits of allow - list and deny - list in Deno. Suppose we are developing
an e - commerce application that requires access to the file system to read
product information from a local JSON file. With Deno, we can set up the
following allow - list permission:

“‘bash deno run - - allow - read=./products.json app.ts “‘
This permission flag will grant read access specifically to the ‘prod-

ucts.json‘ file and nothing more. This allows our application to fetch the
necessary product data it needs, while maintaining a high standard of secu-
rity by denying access to other file system resources that are not relevant to
our app’s function.

Now, let us consider a scenario where we want to restrict network access
for our application, except for a set of specific IP addresses or domains
required for essential features. Deno provides the ‘ - - allow - net‘ flag which
can take a list of domains and IP addresses:

“‘bash deno run - - allow - net=api.example.com,192.168.1.2 app.ts “‘
This effectively creates an allow - list of network resources we want to

permit and disables network access for all other resources. By doing so,
we guard our application against potential vulnerabilities stemming from
unrestricted network access.

As another example, let us assume we are building an application that
interfaces with a database to store and retrieve user information. In this
case, we might want to implement a deny-list that prevents access to specific
files with sensitive data, even if other read/write permissions are granted to
the project. Assume the following command line execution, using the ‘ - -
deny - read‘ flag for deny - list:

“‘bash deno run - - allow - read - - deny - read=./secrets.json app.ts “‘

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 72

In this case, the ‘ - - allow - read‘ flag grants read permissions to the file
system, while the ‘ - - deny - read‘ flag specifically prohibits access to the
‘secrets.json‘ file. This offers developers an additional layer of control to
ensure that their applications maintain a high level of security.

Both allow - list and deny - list approaches have their own merits, and
the appropriate solution often depends on the specific requirements and
considerations of the project at hand. A well - designed combination of these
techniques can provide robust and granular control over the resources your
Deno application has access to, closing the door on potential vulnerabilities
and enhancing the overall security of your project.

Best Practices for Managing Permissions in Deno Appli-
cations

Permission management in Deno starts with the lowest level of access, the
command line flags. Deno provides various flags like ’ - - allow - read’, ’
- - allow - write’, and ’ - - allow - net’ to control the application’s resource
access. By understanding the scope of your software and specifying all
required permissions in the command line, unauthorized access attempts in
the codebase can be prevented.

Using the ’ - - allow - xxx’ flags doesn’t allow the developer to define
precise permissions on a per - file basis. The ’ - - allow - read’ flag on a Deno
application can access many files; however, if it’s only necessary to read from
a specific file, it is advisable to use granular permission control using Allow -
List and Deny - List to limit resource accessibility. An essential guideline
to follow is the principle of least privilege - assign the minimal permissions
required for the application to perform its functions.

Maintaining a clear separation of concerns within the application’s
architecture aids in the permission management process. Organize the code
structure to utilize isolated modules for specific tasks, thereby making it
easier to manage resource access. For example, separating the file - system
related functionality from the networking logic allows you to create a more
granular and secure permission management system.

In an application with larger teams or open - source projects, it’s impor-
tant to establish clear communication around permission handling. Docu-
ment the permissions utilized by the application, and specify the reasons

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 73

behind their necessity. This way, the developers, users, and reviewers can
independently verify the required permissions and understand potential
security implications.

When importing external dependencies or third - party modules, ensure
that they adhere to the same permission management principles as those
within your application. Avoid utilizing libraries that request unwarranted
permissions or expose your system to potential vulnerabilities. Make sure
to follow semantic versioning, as dependency updates can introduce new
permission requirements or change existing ones.

Testing is another critical aspect of permission management. Write
thorough unit and integration tests that cover secured functionality, ensuring
that the software behaves as expected in various permission scenarios.
Permission tests should involve white - box knowledge of the application to
ensure that sensitive actions are explicitly denied access without correct
permissions.

While refactoring the codebase, pay close attention to the permission
handling. Changes in the application’s functionality might lead to modifica-
tions in the permissions required, or some pre - existing permissions might
no longer be needed. Regular auditing and assessment of the application
permissions are necessary to maintain a secure codebase.

When integrating your Deno application with Continuous Integration
tools, be mindful of the permissions you grant to build and test environments.
Limit the CI/CD to only required permissions, as excessive permissions can
expose sensitive data or allow unauthorized modifications to the codebase
during the deployment process.

Lastly, invest time in learning from real - world cases of permissions and
their security implications. Join and contribute to the Deno and TypeScript
communities in discussing permission handling and other security concerns.
This continuous learning enables you to make wiser decisions when crafting
flexible and secure Deno applications.

By following these best practices, developers can create secure, main-
tainable, and efficient Deno applications, with the confidence that sensitive
system resources remain protected. Understanding and managing permis-
sions is a vital skill not just for Deno developers but also for individuals
involved in software engineering, as it is often a cornerstone in improving
the overall security of applications. As we delve into other aspects of Deno,

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 74

this solid foundation of permission management sets a path to build secure
web applications capable of withstanding modern security threats.

Securely Accessing External Resources in Deno Projects

As a developer, securely accessing external resources is crucial to the overall
security of your project. Deno, with its focus on security and permission
management, makes it both indispensable and straightforward to ensure
secure interactions with external systems.

First, let’s discuss situations where you may need to access external
resources. Some common use cases include making HTTP requests, con-
necting to databases, interacting with third - party APIs, reading from or
writing to remote file systems, or utilizing cloud services. Each of these use
cases may introduce potential vulnerabilities if not correctly handled.

Understanding Deno’s Permission Model is essential for securely access-
ing external resources. Deno, by default, runs code in a secure sandbox
environment without access to the file system, network, or any other process
- related capabilities. To access external resources, you need to explicitly
grant these permissions using command - line flags.

The basic permission flags cover three main areas: file system access (- -
allow - read, - - allow - write), network access (- - allow - net), and process
management (- - allow - env, - - allow - run, - - allow - plugin). When running
a Deno script, you can specify what level of permission it has, controlling
access to specific resources.

For example, if you want to grant network access to a specific domain,
you can use the following command:

“‘ deno run - - allow - net=api.example.com my script.ts “‘
This limits network access to only api.example.com. Further limitations

can be enforced if the resource requires specific path prefixes or method
usage. Additionally, employing URL - based allow - lists or deny - lists would
enable further granular control over resource access. Always ensure you
follow the principle of least privilege by only providing access to the required
resources and not more.

Apart from limiting access using permissions, it’s necessary to sanitize
the input coming from external sources. When your application accepts
input from external resources such as REST APIs, Websockets, or GraphQL,

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 75

it should validate and sanitize them before processing. TypeScript offers
type guards, assertion functions, and custom type guards to ensure receiving
data conforms to expected structures, reducing risks like injection attacks,
cross - site scripting (XSS), or denial - of - service (DoS) attacks.

Another critical aspect of securely accessing external resources is the
secure transmission of data. Ensuring data transmitted among external
systems is protected from eavesdropping or tampering becomes paramount.
This can be achieved by using secure communication protocols such as
HTTPS, WSS, or TLS and certificate pinning to prevent man - in - the -
middle (MITM) attacks.

You should also consider tokenizing or encrypting sensitive information to
reduce the risk of disclosing data. When dealing with sensitive information
like API keys, make sure to store them securely, preferably using environment
variables or dedicated secret managers provided by cloud platforms.

Utilizing third - party libraries also plays a significant role in securely
accessing external resources. Only use trusted and well -maintained modules.
Periodically check and update your dependencies, keeping an eye on security
vulnerabilities. You can use tools such as ‘deno audit‘ (analogous to ‘npm
audit‘), ‘dpm‘ (Deno Package Manager), or other vulnerability scanners to
help manage the security of your third - party modules.

Monitoring and logging good practices should also be followed. Detecting
and monitoring anomalous behavior like increased error rates, unexpected
resource access, or unusual data flows, can help in identifying potential
security threats and allow taking preemptive measures to mitigate any risks.

Lastly, education and awareness of the development team members can
significantly contribute to enforcing secure access to external resources in
any Deno project. A development team well - versed in security practices
and knowledgeable about Deno’s security features will ensure that your
project remains secure and adapts to ever - changing security landscapes.

To sum up, Deno’s focus on security, permission management, and
TypeScript features make it uniquely designed to securely access external re-
sources. By following these best practices - understanding Deno’s permission
model, sanitizing input, secure transmission, securely utilizing third - party
libraries, and emphasizing team security awareness - you can be assured that
your Deno projects will stand the test of time and withstand the evolving
challenges in the world of web development. In the next section, we will dive

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 76

deep into integrating third - party modules with the Deno Security Model,
ensuring that we carry the wisdom of securely accessing external resources
throughout our applications.

Integration of Third - Party Modules with Deno Security
Model

It is important to understand Deno’s permission model before we dive into
the integration of third - party modules. Unlike Node.js, which grants its
applications unrestricted access to the entire system, Deno enforces strict
security policies by default and necessitates explicit access permissions at
the execution of the application. This not only reduces the attack surface
but also raises developers’ awareness of the potential risks associated with
certain operations.

When integrating third - party modules in your project, the first aspect
to consider is the level of trust you have in the module and its maintainers.
Check whether the module is reliable, widely used, and actively maintained
by looking into its repository and observing the project’s history, considering
factors like the number of stars, forks, contributors, and open issues.

Next, it is crucial to delve into the module’s documentation and gain an
understanding of the required permissions at runtime. Review the list of
permission flags to determine which resources and operations the module
needs access to. Some common permission flags include ‘ - - allow - read‘,
‘ - - allow - write‘, ‘ - - allow - net‘, and ‘ - - allow - env‘. By understanding
the permissions required by a third - party module, you can ensure that
your application only grants the required access and does not inadvertently
expose sensitive resources or data.

Furthermore, it is critical to correctly manage dependencies in your
application. This is where Deno’s native import system comes into play.
Third -party modules can be easily imported using their URLs, which makes
dependency management much more straightforward and ensures that no
additional setup is necessary. Nevertheless, there are potential downsides to
this approach. The module’s latest version could contain breaking changes,
which may cause unexpected behavior in your application or lead to security
vulnerabilities. To mitigate this risk, you can leverage the ‘ - - lock‘ flag
provided by Deno, which allows you to lock module versions, ensuring the

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 77

application will use the same version consistently.

It is also crucial to inspect the dependencies of the third - party module
itself since a vulnerability in one of these dependencies can impact your
application’s security posture. To ascertain the trustworthiness of these
dependencies, you can use the same techniques outlined earlier: reviewing the
project’s repository, maintainers’ trustworthiness, and overall engagement
of the developer community. Additionally, Deno provides a built - in flag ‘ - -
unstable‘ that can be used to flag modules as unstable, signaling that these
modules are not yet production - ready and should be used with caution, as
they may still undergo significant changes and introduce potential risks.

Now that you have integrated these third - party modules into your
Deno application, it is critical to continuously monitor and regularly update
these dependencies. Keep an eye on their release notes, as well as any
security advisories or vulnerability disclosures associated with them. In
case a vulnerability is discovered, evaluate the impact and patch or update
the module accordingly. Regularly updating your dependencies not only
protects your application against emerging threats but also helps improve
performance and reliability.

Finally, when it comes to security, the principle of least privilege should
always prevail. Grant the least amount of access necessary for a third -party
module to function effectively, while always ensuring that any extraneous
permissions are avoided. This approach complements Deno’s overarching
security - first philosophy, reducing the risk of unauthorized access while
making your application immune to many potential vulnerabilities.

In conclusion, integrating third - party modules with Deno’s security
model is an essential aspect of building robust, secure applications. It
requires developers to be vigilant and proactive in managing dependencies
and permissions, evaluating the trustworthiness of modules and maintainers,
and continuously monitoring for potential vulnerabilities. By doing so,
you reinforce the application’s immune system against emerging threats
and ensure that your application leverages the true potential of the Deno
ecosystem, without compromising its security.

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 78

Advanced Deno Security Features and Techniques

As we venture deeper into the world of Deno, it becomes increasingly
important to grasp the advanced security features and techniques offered
by this revolutionary runtime. Let us explore the art of securing Deno
applications, unraveling lesser - known methods, and techniques without
compromising the user experience and application performance.

To begin our journey, let us consider a powerful yet frequently over-
looked feature of Deno - the ability to sign modules and lockfiles using
cryptographic signatures. As a solid foundation in cryptography is vital in
software development, Deno provides first - class support for digital signa-
tures. You can generate and verify signatures by hashing your codebase,
locking dependencies, and incorporating the resulting hash value into your
deployment process. This ensures the integrity and authenticity of your
code as any tampering would result in mismatched signatures.

A highly effective security practice in the development of Deno appli-
cations is the Principle of Least Privilege (POLP), wherein a program or
user is granted the minimum privileges necessary to perform specific tasks.
This concept limits the potential for a security breach and scope of damage
even when an attacker gains unauthorized access to your application. Deno
enhances this principle by providing fine - grained control over application
permissions. By appropriately and selectively granting permissions, you can
avoid inadvertently compromising your application’s security.

Deno also exposes a built - in sandboxed environment that restricts
access to system resources like the file system, network connections, and
subprocesses. In addition to the ‘ - - allow - *‘ permission flags, this sandbox
provides an extra layer of security for your applications. It is essential to
consider incorporating this security concept throughout your application’s
architecture to prevent unauthorized access.

Furthermore, it is paramount to pay special attention to proper saniti-
zation and validation of user input. Deno’s support for TypeScript allows
developers to leverage type checking mechanisms that significantly reduce
type - related vulnerabilities. TypeScript’s design - time type checks, intelli-
gent type inference, and optional strict mode can proactively detect type
coercion attacks and prevent potential script injection attacks.

In our quest for securing Deno applications, another potent weapon

CHAPTER 4. DENO SECURITY AND PERMISSIONS HANDLING 79

is Content Security Policies (CSP). CSP configuration allows developers
to define the restrictions and permissions for loading resources, such as
scripts, styles, images, and fonts. Deno projects can greatly benefit from
integrating these policies into their applications, safeguarding against Cross
- Site Scripting (XSS) and other script injection attacks.

Delving into third - party modules, it is no surprise that security is a
perennial concern. Deno significantly reduces the risks involved in using
external modules by employing permission flags and isolation of import
statements. Leverage Deno’s ‘deps.ts‘ technique to centralize imports of
third - party modules and enforce strict version locking using lockfiles. This
strategy not only improves the security of your Deno application but also
eases the discoverability, maintainability, and stability of your codebase.

Finally, consider the importance of threat modeling in the design phase
of Deno applications. By identifying assets, mappings, and establishing
trust boundaries, you can systematically consider potential vulnerabilities
and adopt appropriate security measures to counteract threats. Adequate
threat modeling ensures that you are well - prepared for security breaches
and can take swift and well - informed decisions in the event of an attack.

As we reach the end of our exploration into securing Deno applications,
we emerge with newfound knowledge and appreciation for the myriad of
advanced security features enabled by Deno. These powerful, flexible,
and practical techniques empower us to secure our applications without
hampering productivity, agility, or maintainability. Moving forward in our
Deno journey, we shall transfer our wisdom to REST API development and
other essential aspects of application design and implementation. So, let us
forge ahead with unwavering enthusiasm and a steadfast determination to
craft a highly secure and successful Deno application.

Chapter 5

Writing and Publishing
Deno Modules

Let’s imagine that you have a utility function that formats dates in a specific
manner, and you want to share it with your team as well as the wider Deno
community. The first step in creating a Deno module is to structure the file
and directory layout of your module. A typical Deno module should have
the following:

1. A ‘mod.ts‘ file containing the exported functions or classes. 2. A
‘deps.ts‘ file, aggregating all external dependencies. 3. A ‘README.md‘
file with detailed documentation about the module. 4. A ‘.gitignore‘ file to
ignore files and folders that should not be version - controlled. 5. A ‘test‘
folder containing test files for all public APIs.

Next, it is important to export types and interfaces from the module.
TypeScript’s expressiveness in defining types and interfaces is a boon for
module development because it improves the clarity of your code and eases
collaboration. Use the ‘export‘ keyword to export any type or interface
definition that will be utilized by your module’s consumers.

When it comes to dependency management, Deno’s philosophy differs
from Node.js. In Deno, you import dependencies directly using their URLs,
which means you don’t need a package.json file or the npm ecosystem.
Instead, you can aggregate all external dependencies in a ‘deps.ts‘ file, making
it easier for consumers to identify and import the required dependencies.
Ensure you provide the exact versions of third - party libraries that your
module requires to avoid accidental breaking changes due to updates.

80

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 81

Once you have implemented the core functionality of your Deno module,
it is time to create a comprehensive README and documentation. A well -
written README helps users understand the purpose, features, installation
steps, and usage examples for your module. It could also include information
about contributing to your module, testing, and any known limitations.
Good documentation is crucial for the success of a Deno module, as it sets
the ground for user adoption and community engagement.

Testing is a significant aspect of module development, and Deno ships
with a built - in testing framework that simplifies this process. Write unit
and integration tests to ensure the correctness and reliability of your code.
Keep in mind that Deno tests are asynchronous by default, which makes it
easy to work with async functions and promises.

After testing and documenting your module, you’re ready to publish it.
The official module registry for Deno is deno.land/x, which mirrors GitHub
repositories. To publish your module, visit the registry’s website and follow
the instructions to submit a new module. Your module will be reviewed, and
if it meets the criteria, it will be added to the registry, making it accessible
to the entire Deno community.

Finally, as the maintainer of a Deno module, you are responsible for
versioning and release management. Deno recommends using Semantic
Versioning (SemVer) to accurately and predictably version your releases.
This helps users understand the scope of changes when upgrading to new
versions, mitigating potential breaking changes. Establish a release schedule,
regularly update your module to address bugs and feature requests, and
be aware of any changes in Deno and its ecosystem that could impact your
module.

In conclusion, writing and publishing Deno modules involve several
crucial steps: structuring your module, implementing the functionality,
exporting types and interfaces, managing dependencies, documenting and
testing, and ultimately publishing it on deno.land/x registry. By adhering
to these practices, you can create high - quality, maintainable, and widely
adopted Deno modules that drive the growth and success of the Deno
ecosystem.

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 82

Introduction to Writing Deno Modules

To kick off our Deno module writing journey, let’s start with a simple
example. Suppose we wish to create a module that parses and formats
an address. This module includes TypeScript interfaces for the address
components, a parsing function, and a formatting function. We will call
this module ”address - formatter”.

Begin by creating a directory structure for your module. The inclined
directory layout for Deno modules resembles the following:

“‘ address - formatter/ – src/ – address - formatter.ts – test/ – address -
formatter.test.ts – README.md – deps.ts – mod.ts “‘

In this layout, the ”src” directory contains the actual implementation
logic of the module, while the ”test” directory holds related test files. The
”mod.ts” file is responsible for exporting public - facing module components,
whereas the ”deps.ts” file manages external dependencies, centralizing im-
ports from third - party modules.

The first building block of our ”address - formatter” module is to define
a TypeScript interface for the address components:

“‘typescript // src/address - formatter.ts
interface AddressComponents { streetNumber: number; streetName:

string; city: string; state: string; zipCode: number; country: string; } “‘
Following this, we can develop a parsing function that extracts address

components from a string. Utilize the power of JavaScript’s Regular Ex-
pressions combined with TypeScript language features, such as type guards,
to achieve this:

“‘typescript // src/address - formatter.ts
function parseAddress(address: string): AddressComponents null { //

Use Regular Expressions to extract address components. // // Return
AddressComponents object if successfully parsed, or null otherwise. }

// Write a type guard function to assist the parseAddress function.
function isAddressComponents(components: AddressComponents null):
components is AddressComponents { // Perform type checking as per the
requirements of each address component. // } “‘

Once our module can parse address strings, it is time to implement the
formatting function. This can be achieved using template literals to craft
an elegant, human - readable address format:

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 83

“‘typescript // src/address - formatter.ts
function formatAddress(components: AddressComponents): string { re-

turn ‘${components.streetNumber} ${components.streetName}, ${components.city},
${components.state} ${components.zipCode}, ${components.country}‘; }
“‘

Having written the module’s essential functionality, we must now export
these elements from the ”mod.ts” file. This allows the module’s users to
import and utilize our address - formatter module seamlessly:

“‘typescript // mod.ts
export { AddressComponents, parseAddress, formatAddress } from

”./src/address - formatter.ts”; “‘
A crucial aspect of deno module writing is crafting clear and concise doc-

umentation. Module consumers should be able to discern the purpose and
usage of your module simply by reading the provided README file. Addi-
tionally, supplying type definitions and explanations for exported interfaces
enhances the comprehendibility of your module.

Finally, do not ignore tests in your deno module. By implementing unit
and integration tests, module authors can ensure that their code is reliable,
robust, and free of regressions. Leverage Deno’s built - in testing framework
to create extensive test cases for the module’s functionality:

“‘typescript // test/address - formatter.test.ts
import { assertEquals } from ”https://deno.land/std/testing/asserts.ts”;

import { AddressComponents, parseAddress, formatAddress, } from ”../mod.ts”;
// Write unit tests to validate individual functions of the address -

formatter module. //
Deno.test(”Address Formatter”, () => { // Write an integration test

to ensure all exported module functions work in tandem. // }); “‘

Structuring a Deno Module: Files and Directory Orga-
nization

In the Deno ecosystem, module organization revolves around providing a
clear separation of concerns and managing dependencies effectively. A well
- structured module consists of an easy - to - understand hierarchy of files
and folders, where every distinct component resides within a designated
area. This aids in navigating the project effortlessly, simplifying testing,

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 84

and, ultimately, leading to maintainable code.
To begin structuring a Deno module, start by creating a directory

dedicated to your module. The name should be descriptive and adhere to
common naming conventions, such as kebab - case or snake case. Avoid
using spaces or special characters, as these could cause issues on different
operating systems and tools.

Inside the module directory, create the main entry point for your module,
conventionally named ‘mod.ts‘. This file is the primary interface for your
module users, containing exports of the core functionalities. By doing so, the
consumers of your module will only need to import from ‘mod.ts‘ without
worrying about the internal structure.

Next, segregate the module into multiple components by creating dedi-
cated file and folder structures for each. For instance, you may have several
core functionalities or utility functions within a module, each contained
within its folder. By separating the concerns in this way, it is easier to see
which components the module comprises and how they interact.

To illustrate, consider the following simplified example inspired by an
imaginary module called ‘deno-imagery‘, which provides image manipulation
functionality:

“‘ deno - imagery/ filters/ blur.ts contrast.ts grayscale.ts processing/
compress.ts crop.ts resize.ts utils/ constants.ts helpers.ts mod.ts “‘

This structure depicts three main components: ‘filters‘, ‘processing‘, and
‘utils‘. Each component houses its respective TypeScript files providing the
required functionality. This organization is considerate to the ”one file, one
responsibility” principle.

To further refine the structure, it is often beneficial to create a dedicated
test folder for each component with its test files:

“‘ deno-imagery/ filters/ tests/ blur.test.ts contrast.test.ts grayscale.test.ts
blur.ts contrast.ts grayscale.ts (rest of the folders) “‘

Finally, consider including a README file in your module directory,
providing essential information about the module’s purpose, usage, instal-
lation instructions, and even examples. This file will act as the module’s
documentation, and should be concise enough for users to gain a good
understanding of its purpose and usage.

In conclusion, establishing a consistent and efficient file and directory
structure is a crucial part of building Deno modules. A well - structured

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 85

module allows developers to navigate and understand the codebase quickly,
leading to maintainable and scalable applications. By following best practices
such as separating concerns and organizing tests alongside their implemen-
tation, Deno developers can create a solid foundation for their projects,
ensuring long - term success as they continue to build upon their modules.

Moving forward, readers can build on this foundation for Deno module
development as they progress through other parts of the outline. This
knowledge will aid them in better understanding the implementation of
more advanced Deno concepts and explore the vast Deno ecosystem.

TypeScript Features for Module Development: Export-
ing Types and Interfaces

To illustrate the benefits and usage of exporting types and interfaces in
TypeScript, let’s consider an example Deno application with multiple mod-
ules that handle various user - related actions. A user module typically deals
with creating, updating, reading and deleting user data.

Firstly, we define a type representing a user object within the application.
This type will let TypeScript ensure that various parts of the application
work with user objects consistently and correctly:

“‘typescript // types.ts
export interface User { id: number; name: string; email: string; create-

dAt: Date; updatedAt: Date; } “‘
In the example above, we created an interface named ‘User‘ that describes

the shape of a user object in our application. The ‘export‘ keyword allows
other modules in the application to import and use this interface.

Now let’s create a module that handles the functionality of creating a
user:

“‘typescript // user - creation.ts
import { User } from ’./types.ts’;
export function createUser(name: string, email: string): User { const

newUser: User = { id: generateId(), name, email, createdAt: new Date(),
updatedAt: new Date(), }; // Save the user to storage (omitted for brevity)
return newUser; } “‘

In the ‘user - creation.ts‘ module, we import the ‘User‘ interface with
the ‘import‘ keyword, and create a function ‘createUser‘ that accepts user

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 86

information as parameters to create a new user object adhering to the ‘User‘
interface. This ensures that the created object has the correct shape and
properties.

Now let’s create another module that fetches user data from storage:
“‘typescript // user - fetching.ts
import { User } from ’./types.ts’;
export function getUser(id: number): User null { // Fetch the user by

its id from storage (omitted for brevity) const user = fetchUserById(id);
return user; }

export function getAllUsers(): User[] { // Fetch all users from storage
(omitted for brevity) const users = fetchAllUsers(); return users; } “‘

In the ‘user - fetching.ts‘ module, the ‘User‘ interface is imported again,
allowing us to declare the return type for the ‘getUser()‘ and ‘getAllUsers()‘
functions. This makes it easier to reason about the data being returned, and
TypeScript can provide autocompletion and type - checking for developers
working with these functions in other parts of the application.

Notice how we’ve utilized the ‘User‘ interface in these different modules
while maintaining clean separation of concerns between them. Exporting and
importing types across modules not only promotes a modular architecture
but also enables leveraging TypeScript for validation, autocompletion, and
type - checking.

However, it is crucial to remember that these types and interfaces must
be exported in a way that they can be efficiently tree - shaken during module
bundling. To do this, avoid using the ‘export default‘ syntax when exporting
types and interfaces, and instead opt for named exports, as shown in the
examples above.

Dependency Management: Importing and Exporting
Deno Modules

Deno follows the ECMAScript Modules (ESM) standard, which has become
the default module system for modern JavaScript and TypeScript projects.
In contrast to Node.js, Deno does not rely on the ‘require‘ function or
the CommonJS module format, opting to use native ES modules instead.
This decision not only simplifies the syntax but also improves the overall
developer experience by facilitating static analysis and eliminating the need

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 87

for custom module resolutions or bundlers.
One of the most prominent aspects of Deno’s dependency management is

the use of URLs for importing modules. Deno can import modules directly
from remote locations by providing a URL as the import path, ensuring
that dependencies are retrieved during runtime. This method of importing
has several benefits, such as eliminating complex dependency trees and
improving security. Consider the following example:

“‘typescript import { serve } from ”https://deno.land/std@0.110.0/http/server.ts”;
“‘

In this script, we import the ‘serve‘ function directly from the Deno
standard library’s HTTP server module. The version tag, ‘@0.110.0‘, allows
us to lock a specific version of the library, thus maintaining compatibility
and stability in our codebase.

Deno also supports importing local files by using relative or absolute file
paths. To import a local module, simply include the file extension:

“‘typescript import { myFunction } from ”./myModule.ts”; “‘
When working with Deno and TypeScript, you must also consider the

type definitions for the imported modules. The type definitions enable
TypeScript to catch type errors during development in your IDE and build
process. For popular libraries, the types are often included within the library
itself or available in the ‘deno.land/x‘ registry. Many Deno modules provide
TypeScript type definitions out - of - the - box, ensuring seamless integration
and an enhanced developer experience.

In addition to importing modules, exporting modules in Deno is identical
to other ESM environments. By using the ‘export‘ keyword, we can expose
a function, class, variable, or type to other modules that import it. The
following example demonstrates exporting a function in a Deno module:

“‘typescript // myModule.ts export function myFunction(message: string):
void { console.log(message); }

// main.ts import { myFunction } from ”./myModule.ts”;
myFunction(”Hello, Deno!”); “‘
Since Deno does not utilize bundlers like webpack or rollup, developers

must ensure that all dependencies are explicitly imported in their application.
This constraint encourages clean and maintainable code as developers must
be conscious of the dependencies their application relies upon.

An important aspect of Deno’s dependency management involves man-

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 88

aging third - party dependencies. To ensure your application’s stability and
security, you must carefully consider the libraries you include. Moreover,
Deno caches remote dependencies locally, preventing the need to redownload
them with each execution of the script. However, it is essential to keep your
cached dependencies up to date with the ‘ - - reload‘ flag or by using Deno’s
built - in dependency analysis tools.

In conclusion, Deno’s approach to dependency management with URL
imports, its adoption of the ECMAScript Modules standard, and its support
for TypeScript present a intuitive and secure system for managing depen-
dencies in modern web development. This system, while requiring explicit
dependency declarations, enables developers to maintain easily comprehen-
sible codebases while lowering the risk associated with complex dependency
trees and outdated third - party libraries. Embracing these techniques will
help you create robust, maintainable, and secure applications as you venture
further into the world of Deno development.

Creating a README and Documentation for Your Deno
Module

Begin your README with a concise, inviting introduction that explains
the purpose, benefits, and targeted audience for the module. A prominent
logo or banner can provide a visual cue that distinguishes your module,
builds brand identity, and makes it more memorable. Writing a one - liner
description of the module is essential in capturing the attention of potential
users who come across it through search results or browsing.

Next, guide the reader through the installation process. Specify the
minimum requirements, including the Deno version, any dependencies, and
supported platforms. When illustrating the installation steps, keep the
instructions as simple and straightforward as possible. Presenting the
command to import your module directly from a registry like deno.land/x,
Skypack, or Jspm provides a streamlined approach for developers to get
started with your module quickly.

The usage section forms the backbone of your README. It should
contain clear, well - thought - out, copy - paste friendly examples showcasing
common use cases and key features of your module. Integrating these
examples into runnable code snippets allows developers to see the module in

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 89

action with minimal effort, increasing the likelihood of adoption. This section
might include brief comparisons or references to alternative libraries if they
help clarify how your module addresses specific pain points or innovations.

Sprinkling your file with engaging subheadings, lists, and diagrams helps
your README become both approachable and scannable. Examples should
be revisited throughout the document to ensure they remain relevant as you
update module features or API changes. To illustrate advanced functionality,
present these examples alongside the rationale for why they might be useful,
creating context and fostering understanding of complex scenarios.

Deno’s built - in dependency inspector (‘deno info‘) presents a tree of all
imported modules, visualizing the module’s impact on the project. Integrat-
ing this graphic within your README can demonstrate how lightweight
or well - integrated your module is. Visual aids and snapshots of the mod-
ule’s performance, response times, and resource utilization provide a strong
argument for convincing potential users of its proficiency and reliability.

A dedicated section on testing, building, and contributing can empower
open - source enthusiasts and fellow developers to join your efforts. Outline
testing methodologies, required tools, and provide procedures for submit-
ting changes to the codebase. Consider adopting a Code of Conduct and
guidelines for submitting issues or pull requests to foster a more inclusive
and professional environment.

Finally, when crafting the documentation for your Deno module, con-
sistency is vital. Your documentation’s tone and style should be coherent
across its sections, providing a smooth and cohesive experience. Use clear
and simple language to explain complex concepts, avoiding jargon whenever
possible. As TypeScript is native to Deno, incorporating static types and
clear interface descriptions will deepen understanding and reinforce the
module’s foundations. This approach not only strengthens your module’s
adoption but also contributes valuable knowledge and practices to the larger
Deno community.

As we step into the next section of our exploratory journey, let us equip
ourselves with the knowledge of TypeScript’s powerful type features and
learn how to harness their potential in crafting expressive and efficient Deno
applications. We will delve into union types, intersection types to enhance
our skillset, allowing us to develop more superior and expressive Deno
modules capable of leaving a lasting impression on the Deno ecosystem.

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 90

Writing Tests for Your Deno Module: Unit and Integra-
tion Tests

Writing tests for your Deno module is an essential step towards ensuring
that your code is correct, reliable, and maintainable. Tests can validate
functional correctness, ensure compatibility with other modules, and help
catch regressions before they impact users. In short, good test coverage is
the backbone of any well - designed, sustainable software project.

Unit Tests: Cornerstones of Quality Code The primary type of tests you’ll
be writing for your Deno module are unit tests. Unit tests are focused on
individual functions or components and ensure that each component behaves
as expected. They are designed to be isolated from external dependencies
and can often run quickly.

Deno’s integrated testing framework makes it easy to create unit tests
for your code. To demonstrate, let’s say you’re developing a Deno module
that contains a function named ’add’. This function takes in two numbers
and returns their sum.

Your ’add’ function is defined as follows:
“‘typescript export function add(a: number, b: number): number {

return a + b; } “‘
You can create a unit test for this function using Deno’s ‘test‘ function.
“‘typescript import { assertEquals } from ”https://deno.land/std/testing/asserts.ts”;

import { add } from ”./your module.ts”;
Deno.test(”add: should return the sum of two numbers”, () => {

const result = add(2, 3); assertEquals(result, 5); }); “‘
This test imports the ‘add‘ function from your module and uses the

‘assertEquals‘ assertion helper from Deno’s standard library to verify that
the result of the function is correct. You may run these tests using the
following command:

“‘sh deno test - - allow - read “‘
The ‘ - - allow - read‘ flag may be needed if your Deno module reads from

the file system.
Integration Tests: Gauging System - wide Health Integration tests focus

on testing the combined behavior of multiple components or modules working
together. These tests can help identify any issues when different parts of your
Deno module interact, and ensure your module works correctly when used

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 91

alongside other packages or external resources. They usually take longer to
run than unit tests, due to the increased complexity of the scenarios tested.

To illustrate integration testing, let’s expand on our previous exam-
ple. Now, suppose you’re developing a Deno module that performs basic
arithmetic operations - addition, subtraction, multiplication, and division.

You export these functions from a module named ‘arithmetic.ts‘:
“‘typescript // arithmetic.ts export function add(a: number, b: number):

number { /* */ } export function subtract(a: number, b: number): number
{ /* */ } export function multiply(a: number, b: number): number { /* */
} export function divide(a: number, b: number): number { /* */ } “‘

Now, you’re interested in testing the entire ‘arithmetic‘ module to ensure
that all functions work together as expected. You could create an integration
test as follows:

“‘typescript import { assertStrictEquals } from ”https://deno.land/std/testing/asserts.ts”;
import * as arithmetic from ”./arithmetic.ts”;

Deno.test(”arithmetic: should perform basic operations correctly”, async
() => { assertStrictEquals(arithmetic.add(2, 3), 5); assertStrictEquals(arithmetic.subtract(7,
3), 4); assertStrictEquals(arithmetic.multiply(4, 3), 12); assertStrictEquals(arithmetic.divide(9,
3), 3); }); “‘

This test imports all functions from the ‘arithmetic‘ module and ver-
ifies that their combined behavior is correct. Since the test has multiple
components working together, it’s classified as an integration test.

As your Deno module grows, test - driven development becomes crucial
for gauging the project’s overall health and confirming that new changes
don’t introduce regressions. Taking the time to thoroughly test not only
improves the quality of your codebase but also instills confidence in its users.

Versioning and Release Management for Deno Modules

Versioning and release management are vital aspects of software development
that ensure the stability of a project while accommodating new features and
bug fixes. In the world of Deno, the same principles apply to create and
maintain Deno modules that are reliable and easy to use for the community.

One of the fundamental steps towards a well - managed Deno module
is having a clear and systematic versioning strategy. Semantic versioning
(SemVer) is a popular standard in the open-source community. It follows the

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 92

pattern of ‘MAJOR.MINOR.PATCH‘, where each component is an integer,
and each increment signifies a specific kind of change: - ‘MAJOR‘ version is
incremented when making backward - incompatible changes or significant
updates. - ‘MINOR‘ version is incremented when introducing new features
in a backward - compatible manner. - ‘PATCH‘ version is incremented for
backward - compatible bug fixes and minor improvements.

Effective versioning communicates the essence of changes to users and
helps maintain expectations as they upgrade to newer releases of a Deno
module.

Let’s walk through an example. Imagine developing a Deno module
‘fooify‘ that initially released version ‘1.0.0‘. Later, a new feature is added
to the module, and the version is bumped to ‘1.1.0‘. Some time afterward, a
bug fix is introduced, and the version becomes ‘1.1.1‘. If a significant change
in the module design is implemented, making it backward - incompatible,
the major version is incremented, resulting in version ‘2.0.0‘.

The next crucial aspect of maintaining a Deno module is release manage-
ment. Aligning releases with version updates helps to organize and control
the distribution of the module, ensuring a seamless experience for users.
Here are some best practices to follow when managing releases:

1. **Changelog**: Maintain a comprehensive changelog that documents
the changes introduced in each version. This allows users to understand what
to expect from each update and plan their module upgrades accordingly.
The changelog should include the release date, version number, and details
about any additions, improvements, and bug fixes.

2. **Git Tags**: Leverage git tags to associate specific commits with
version numbers. This enables users to browse and switch between differ-
ent versions effortlessly. Remember to push tags explicitly to the remote
repository: ‘git push origin - - tags‘.

3. **Pre - releases**: For Deno modules with frequent releases or in
active development, pre - releases can be used to share upcoming changes
with the community while retaining the stability of the current version. Pre
- releases can be marked with additional labels such as ‘ - alpha‘, ‘ - beta‘, or ‘
- rc‘, e.g., version ‘1.1.0 - alpha.1‘.

4. **Deprecation Strategy**: If a feature is to be removed or changed
significantly in an upcoming release, providing clear and timely deprecation
warnings helps prepare users for the transition. This can be done through

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 93

log messages, documentation updates, and announcements on relevant
platforms.

5. **Automated Release Management**: To streamline the release
process, use tools like GitHub Actions or GitLab CI/CD to automate tasks
such as running tests and linters, building and publishing artifacts, and
updating the Deno module registry. Automation reduces the risk of human
error and ensures consistent release quality.

Going back to the ‘fooify‘ example, the module now has automated
release workflows and a well - documented changelog. When developers
release a new version, CI/CD tools run tests and linters, while community
members can track the project’s progress and understand the scope of each
release.

Well - orchestrated versioning and release management practices give
users confidence in the quality and reliability of a Deno module. Equipped
with semantic versioning and a release strategy tailored to the module’s
unique requirements, developers can focus on advancing their projects with
the assurance that each update is meaningful and comprehensible to the
community.

As module creators traverse the rich Deno ecosystem, adopting these
practices will not only enhance the development experience but also play
a part in shaping the future of a truly interconnected, shared, and well -
governed library of Deno modules. Embrace the challenge of crafting better
software and nurture the spirit of open collaboration that defines the heart
of Deno.

Publishing Your Deno Module on deno.land/x Registry

Before publishing, make sure that your Deno module adheres to the quality
standards expected in the Deno ecosystem. This includes writing clear,
concise, and maintainable code while leveraging TypeScript and Deno best
practices. Additionally, provide thorough documentation in the form of a
README file to guide users through the usage and configuration of your
module. Don’t forget to include a concise and representative description for
your module as well since it will be shown in the registry listing. Strong
documentation allows potential users to quickly understand the purpose of
your module and evaluate its usability for their project.

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 94

Once your Deno module is prepared, the first step in publishing it on
deno.land/x is to host the code on a publicly accessible website, most
commonly a Git repository. GitHub, GitLab, and Bitbucket are popular
choices for hosting your code. Be sure to create a thoughtful and well -
organized directory structure within your repository, as this will reflect on
the organization of your published package. If your module contains several
related packages, consider using a monorepo approach with dedicated sub -
directories for each package.

After hosting your code on a public Git repository, the next step is
to create a tagged release for your module following semantic versioning
rules. When creating a new release, choose a descriptive and meaningful
tag name, e.g., ”v1.0.0” where the version number follows the pattern
”major.minor.patch”. This will allow users to import a specific version of
your module, making it easier for them to manage dependencies and avoid
breaking changes when you introduce updates to your module.

To add your module to the deno.land/x registry, navigate to the deno.land/x
website and click on the ”Add a module” button. In the form that appears,
you’ll provide the following information:

1. Repository URL: Paste the URL to your Git repository, preferably
the HTTPS version to ensure easy access for Deno users. 2. Name: Choose
a unique, descriptive, and memorable name for your module that accurately
reflects its purpose. 3. Description: Provide a concise summary of your
module, its features, and its intended use.

Double - check the information you’ve provided before submitting the
form. If the information is accurate and the deno.land/x registry accepts
your submission, your Deno module will appear in the registry listing and
be ready for use by other developers!

After publication, it is your responsibility to maintain, improve, and
support your module. This includes staying current with Deno and Type-
Script updates, addressing reported issues, and accepting contributions from
the community. Regularly update your module, incrementing the version
number accordingly, and create tagged releases for each update. Be sure
to communicate any breaking changes clearly and promptly to your users
by including detailed notes in your repository’s release section and your
module’s README file.

To enhance the discoverability and credibility of your module, actively

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 95

promote it within the Deno community, on social media platforms, and
developer forums. Engage with users who have questions, suggestions,
or need help navigating your module. As you build a supportive user
community, your module will gain exposure, popularity, and contributions,
which will ultimately benefit both your module and the Deno ecosystem.

In conclusion, publishing your Deno module on the deno.land/x registry
is a rewarding experience that brings your hard work and dedication to the
forefront of the Deno developer community. The coordination between your
Git repository and the registry ensures a streamlined experience for both
you, as the module author, and the developers who will ultimately use your
module. Embrace this opportunity to share your work with the community
and help enrich the Deno ecosystem as it continues to grow and evolve into
the future.

Deno Module Maintenance and Continuous Integration:
GitHub Actions

Deno, the modern runtime for JavaScript and TypeScript, has garnered
immense popularity in a short span of time. It brings a fresh perspective
along with some exciting features that provide an alternative to the long -
established Node.js ecosystem. As we continue our in - depth exploration of
Deno, let’s now shift our focus to a crucial aspect of every software project:
module maintenance and continuous integration.

Picture this: you’ve built an incredible Deno module, documented it,
and published it on deno.land/x for others to use. You’re now a proud
open - source contributor! However, this isn’t the end of your journey. Just
like a loving parent, you must nurture and care for your project to ensure
it continues to evolve and flourish. With the ever - changing landscape of
software and technology, maintaining the health of your Deno module is as
important as its initial development.

The first line of defense against code rot and technical debt is keeping
your module up-to-date with Deno’s latest developments. As Deno matures,
new features and performance improvements will demand you adapt your
code to maintain compatibility and performance. Don’t forget to stick to
semantic versioning and release detailed changelogs to provide clarity for
your peers and users.

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 96

The Deno community thrives on a shared sense of ownership. To grow
and improve your module, keep a keen eye on inbound pull requests and
issues by watching your repository or subscribing to notifications. Be
responsive, maintain clear communication, and strive to treat everyone with
respect. Their interest in your work confirms that your contribution has
value and that it’s making a difference. Sharing the journey of improving
your module with the community will fill you with immense pride and
satisfaction.

Tests play a pivotal role in every software maintenance strategy. Ensure
your module is thoroughly tested with both unit and integration tests.
Deno’s built - in testing framework makes this a breeze. As you fix bugs
and implement new features, make certain all relevant tests are updated
and that your test suite produces a comprehensive report. Test coverage is
important but do not forget that quality over quantity is key.

Now that we’ve kept our Deno module in good shape, let’s look at how
continuous integration fits into the equation. Continuous integration (CI)
refers to a modern software development practice where multiple developers
integrate changes into a shared repository on a frequent basis. The chief
goal of CI is to identify and fix bugs and other issues as early as possible. In
our context, we’ll be examining GitHub Actions as a CI solution for Deno
projects.

GitHub Actions provides a powerful, flexible, and straightforward way to
automate your workflow, ranging from testing to deployment. By leveraging
GitHub Actions, you’re enhancing the efficiency and reliability of your Deno
module maintenance. A well - rounded GitHub Actions workflow should
include tasks such as deno lint, deno fmt, deno test, and TypeScript type -
check to catch common issues before they make it into the final module.

Setting up a GitHub Actions workflow is as simple as creating a YAML
configuration file in a special directory named ‘.github/workflows‘ at the
root of your project. From this file, you can define your workflow’s triggers,
environment, jobs, and steps. Deno’s first - class TypeScript support, as well
as the availability of Deno - specific GitHub Actions such as ‘denoland/setup
- deno‘, transforms CI setup into a hassle - free process.

In essence, a strong CI workflow not only keeps your code in prime
condition but also encourages open - source collaboration. When other
developers contribute to your module via pull requests, your CI checks will

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 97

provide valuable feedback for the contributors, ensuring that the project
remains stable. This improved feedback loop enables a healthy module
ecosystem that can be dynamically maintained.

In this philosophical waltz of creation, maintenance, and collaboration,
we’ve discovered the importance of nurturing and securing the continuity of
our Deno module. Through proper maintenance strategies and a continuous
integration process powered by GitHub Actions, we enable our Deno projects
to consistently uphold high standards while offering us an intriguing glimpse
into the collaborative spirit of the Deno community.

With this wisdom in our arsenal, we transition to the next stage of
our Deno learning journey: exploring the diverse world of union types and
discriminated unions as we delve into Deno application development. For
now, cherish and nurture your Deno module, knowing that you are part of
a dynamic and spirited community that appreciates your hard work and
contributions.

Promoting and Growing Your Deno Module: Commu-
nity Engagement and Contribution Guidelines

Establishing a healthy and engaged developer community around your Deno
module is crucial because it helps in several ways: it ensures the longevity and
maintenance of your module, increases the likelihood of adoption by other
developers, helps you discover new use cases, and enables you to gather
valuable feedback. To create such a community, focus on the following
practices.

First and foremost, create an inviting project README. Clearly explain
the module’s purpose, how to use it, and why developers should choose
it over alternative solutions. In addition, include concise code examples,
demonstrating how your module addresses common use cases. Consider
adding a table of contents, facilitating easy navigation of the document.
This helps ensure that potential users have a positive first experience with
your module.

Beyond the README, provide comprehensive and well - organized
documentation, making it easier for users to find relevant information.
Separate the documentation into sections, such as an installation guide,
API reference, and examples. If your module is complex, consider setting

CHAPTER 5. WRITING AND PUBLISHING DENO MODULES 98

up a dedicated website to host this documentation. Numerous static site
generators, like Docusaurus or VuePress, could facilitate the documentation
process and make the content more digestible.

Actively engage with users on social media, forums, and other online
platforms. Share updates about the module, engage in relevant discussions,
and encourage users to help each other. Respond courteously and construc-
tively to comments, suggestions, and questions, even if they’re criticisms.
Your attitude will inspire others to engage similarly with the project.

In addition to promoting your module, implement practices that en-
courage contributions from the community. Make it easy for people to
contribute by providing clear and concise guidelines outlining how to partic-
ipate. Create a dedicated CONTRIBUTING.md file, explaining the steps
for submitting bug reports, feature requests, and code contributions. You
should also set up the necessary issue and pull request templates, ensuring
that submitted information is standardized and comprehensive.

Another factor in inviting contributions is a transparent and well -
organized issue tracker. Thoroughly triage issues as they arise, assigning
appropriate labels and milestones. This will help potential contributors
find the right tasks to work on and also signal that the project is actively
maintained.

Furthermore, offer guidance and mentorship for new contributors and
embrace a positive code review culture. Welcome newcomers with open
arms, and provide constructive feedback on their submissions. Recognize
their contributions by giving credit and showcasing their work on social
media or in release notes.

Finally, consider promoting the adoption of your Deno module by writing
blog posts, giving talks, creating videos, or presenting at meetups and
conferences. Share your knowledge and experiences with the community,
demonstrating the problems your module solves and how it stands out from
existing solutions.

By adopting these practices, you will not only promote the growth and
adoption of your Deno module but also create a community of engaged,
satisfied, and enthusiastic developers. They will help maintain and improve
your module, evangelize its usage, and provide invaluable feedback as you
continue to develop and expand its capabilities.

Chapter 6

Advanced TypeScript
Features for Deno

To begin, let’s consider mapped types, an advanced TypeScript feature
that allows you to create new types based on existing ones by applying
a transformation to each member of the given type. Mapped types can
be particularly helpful in implementing Deno applications, as they offer a
degree of flexibility and type inference that can save time in refactoring and
typing repetitive data structures.

For example, imagine you have a Deno module containing various con-
figuration options as a type:

“‘ts type Configuration = { host: string; port: number; apiVersion:
string; }; “‘

Now, you want to create a new type representing a partial configuration
with all the properties optional. With mapped types, you can easily achieve
this without repeating each property:

“‘ts type PartialConfiguration = { [K in keyof Configuration]?: Configu-
ration[K]; }; “‘

The ‘PartialConfiguration‘ type now has the same properties as ‘Configu-
ration‘, but each one is optional. This becomes particularly beneficial when
working with complex or deeply nested data structures in Deno applications.

Next, let’s explore conditional types. Conditional types allow you to
express non - uniform type mappings depending on the condition provided.
In the context of Deno development, conditional types can enable you to
create more versatile and reusable utility types, significantly cutting down

99

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 100

on code duplication. Consider the following example:
“‘ts type UnwrappedPromise<t> = T extends Promise<infer u=””> ?

U : T;
async function fetchData(url: string): Promise<string> { return await

fetch(url).then((response) => response.text()); }
type FetchedData = UnwrappedPromise<returntype<typeof fetchdata=””>>;

“‘
In this scenario, ‘UnwrappedPromise‘ is a conditional type that checks

if the input type ‘T‘ is a ‘Promise‘ and extracts the underlying value type
‘U‘. Consequently, ‘FetchedData‘ is inferred as ‘string‘, the inner type of
the ‘Promise‘ returned by the ‘fetchData‘ function. This demonstrates how
conditional types can help you derive accurate type information in your
Deno projects without the need for extensive type annotations.

Assertion functions present another valuable TypeScript feature when
used in the context of Deno development. They enable you to assert that
a given value is of a specific type, allowing you to narrow down the type
within the control flow. For instance, an assertion function can be used to
guarantee the safety of an external resource access in a Deno application:

“‘ts function assertString(value: unknown): asserts value is string {
if (typeof value !== ”string”) { throw new Error(‘Expected a string, but
received a ${typeof value}‘); } }

const configValue = Deno.env.get(”CONFIG VALUE”); assertString(configValue);
const trimmedConfigValue = configValue.trim(); // Guaranteed to be a

string. “‘
In this example, ‘assertString‘ is an assertion function that verifies if the

provided value is a string. If it encounters a non - string value, it throws an
error. This assertion allows developers to ensure type safety when accessing
environment variables or other external resources in Deno applications.

Custom type guards also find their niche in Deno development. Type
guards are functions that, when returning ‘true‘, guarantee that a specific
value is of a certain type. In contrast to assertion functions, type guards
behave as boolean checks rather than asserting conditions. In Deno projects,
custom type guards can help you validate and narrow down types coming
from user input, network requests, or other uncertain sources.

For example, consider working with data arriving from an HTTP request,
which may contain numbers encoded as strings:

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 101

“‘ts function isNumber(value: unknown): value is number { return
typeof value === ”number” !isNaN(Number(value)); }

async function handleRequest(request: Request): Promise<response> {
const requestBody = await request.json();

if (isNumber(requestBody.value)) { // Perform operations with ’request-
Body.value’ as a guaranteed number. } else { return new Response(”Invalid
data”, { status: 400 }); } } “‘

In this case, the custom type guard ‘isNumber‘ not only checks if the
given value is a number but also verifies if it can be converted to a number
without resulting in ‘NaN‘. This example illustrates how custom type guards
can narrow down uncertain types and enable safer handling of incoming
data in Deno applications.

In conclusion, Deno’s compatibility with TypeScript paves the way for
leveraging advanced TypeScript features to enhance the developer experience
and ensure type safety. Mapped types, conditional types, assertion functions,
and custom type guards are just a few of the myriad powerful TypeScript fea-
tures that can greatly benefit your Deno applications when used judiciously.
</response></returntype<typeof></string></infer></t>

Union Types and Discriminated Unions in Deno Appli-
cations

Consider a Deno application that processes numerous heterogeneous entities,
such as product catalogs in an e-commerce store. It is routine for developers
to encounter scenarios where they must model the relationships between
the items, such as products with different attributes that must be treated
differently depending on their properties. Union Types address this need
with brevity and clarity. Using the pipe (“) operator, Union Types allow
developers to specify that a particular value can take on one of several
distinct values or types. For example, a variable that represents a product’s
attribute could be typed as ‘string number‘ if the attribute can take on
either a string or a number.

The trait of Union Types in expressing relationships among disparate
types ensures that Deno developers can build applications with flexible
data structures and elegant interfaces. For instance, it is common for a
source of input data, such as a file or a network request, to deliver data

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 102

in various formats or payloads. By employing Union Types and narrow
checking techniques, such as user - defined type guards, a Deno application
utilizing TypeScript could efficiently and safely process data of varying types
without becoming unwieldy with type casting or type coercion.

Discriminated Unions, colloquially known as ”tagged unions” or ”alge-
braic data types,” elevate the utility of Union Types by ensuring a level of
type safety, which is indispensable when handling complex data structures
in a Deno application. The key component of Discriminated Union is the
presence of a common, literal type - valued property, the discriminant, in
all constituent types. The discriminant enables TypeScript to perform
exhaustive checks and ensures that all possible cases are addressed, thus
avoiding any unexpected runtime errors. This results in a prudent type -
driven development approach.

To illustrate the practicality of Discriminated Unions in Deno applica-
tions, let us examine a specific example. Suppose that we are designing
an online media player where various tracks are organized in a playlist.
Each track could be of audio, video, or podcast type, each having its own
unique set of properties and characteristics. By employing Discriminated
Unions, we can elegantly represent the relationship among these tracks with
a common discriminant property named ”kind”:

“‘typescript type AudioTrack = { kind: ”audio”; duration: number; //
};

type VideoTrack = { kind: ”video”; resolution: string; // };
type PodcastTrack = { kind: ”podcast”; authors: string[]; // };
type Track = AudioTrack VideoTrack PodcastTrack; “‘
To process these tracks efficiently, for example, to filter out audio or video

tracks with a specific duration or resolution, we can utilize the discriminant
property ”kind” in conjunction with the type guards to achieve type safety:

“‘typescript function processTracks(tracks: Track[]) { tracks.forEach((track)
=> { switch (track.kind) { case ”audio”: console.log(”Processing audio
track:”, track.duration); // break; case ”video”: console.log(”Processing
video track:”, track.resolution); // break; case ”podcast”: console.log(”Processing
podcast track:”, track.authors); // break; } }); } “‘

Through the creative implementation of Union Types and Discriminated
Unions, Deno developers can strike a delicate balance between flexibility and
type safety, resulting in seamless integration of the TypeScript constructs

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 103

with the dynamic nature of JavaScript constructs. As we delve deeper
into the world of Deno and TypeScript, we will bear witness to how these
powerful constructs prove indispensable in crafting robust applications,
freeing developers from the hassle of type coercion and explicit type casting,
and allowing them to focus on crafting meaningful, elegant, and maintainable
solutions. These valuable characteristics are a testament to the power of
TypeScript and its prowess as the first - class language that takes center
stage in the Deno ecosystem.

Advanced Utility Types for Deno Projects

One of the most frequently used advanced utility types is the Partial type.
It creates a new type based on an existing one, making all of its properties
optional. This comes in handy when working with updating objects, where
certain properties can be left out. Consider a route for updating a ”User”
resource in a REST API:

“‘typescript interface User { id: number; name: string; email: string; }
function updateUser(userId: number, changes: Partial<user>): User {

// Perform update and return the updated user object } “‘
By using the ‘Partial<user>‘, the ‘updateUser‘ function can accept an

object that contains zero, one, or multiple properties of a user. This enables
precise type safety for partially updating objects without having to create
separate types for each combination of properties that could be updated.

Another useful advanced utility type is the ‘Omit‘ type. It is the opposite
of the ‘Pick‘ type, creating a new type by excluding specified properties from
an existing type. In a scenario where you would like to return an object for
display purposes but omit certain sensitive or unnecessary attributes, you
can use the ‘Omit‘ type to maintain type safety. For instance, we can create
a ‘SafeUser‘ type that omits a user’s email address:

“‘typescript type SafeUser = Omit<user, ”email”=””>;
function getSafeUser(user: User): SafeUser { const { email, safeProper-

ties } = user; return safeProperties; } “‘
When implementing caching in your Deno application, you may wish

to store a snapshot of an object at a particular point in time. However, as
the original object mutates, the cached object should remain unchanged.
The ‘Readonly‘ utility type can be employed to enforce immutability for the

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 104

cached object, ensuring the cached version won’t be inadvertently altered:
“‘typescript type ImmutableUser = Readonly<user>;
function cacheUser(user: User): ImmutableUser { return Object.freeze(user);

} “‘
In this example, the ‘ImmutableUser‘ type prohibits any mutation,

and attempts to modify its properties will result in a compile - time error.
Combining this with ‘Object.freeze()‘ enforces immutability at runtime as
well, helping to safeguard the integrity of the cache data.

The ‘ReturnType‘ utility type enables you to extract the return type
of a function, perfect for situations in which a function returns a complex
type that you want to reuse in your code. Suppose you have a function
‘fetchUser‘ that returns a promise with a user’s data:

“‘typescript async function fetchUser(userId: number): Promise<user>
{ // Fetch user data from an API }

type FetchedUser = ReturnType<typeof fetchuser=””>; “‘
Using the ‘ReturnType‘ utility, we create a new type ‘FetchedUser‘,

which represents a promise that resolves to a ‘User‘ object. This type can
now be reused when dealing with results from the ‘fetchUser‘ function.

TypeScript offers additional powerful utility types like ‘Exclude‘, ‘Ex-
tract‘, and ‘Record‘, which can also be utilized in Deno projects to improve
type safety, readability, and maintainability of your code.

It is essential to recognize the elegance advanced utility types can bring to
Deno projects. They enable nuanced and precise type manipulations, aiding
developers in writing type-safe, expressive, and maintainable code. However,
one must be cautious not to overuse or misuse these utilities, as they can
sometimes add excessive complexity or be misapplied if not adequately
understood. </typeof></user></user></user,></user></user>

Intersection Types and Merging for Configurations and
Dependency Injection

To begin, let’s understand what intersection types are. Essentially, an
intersection type is a construct that combines multiple distinct types into
a single type. This new type represents the combination of individual
properties and behaviors of the original types. An intersection type is
created in TypeScript using the ’&’ operator. Let’s consider the

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 105

following example:
“‘typescript interface Configuration { host: string; port: number; }
interface Logger { log: (message: string) => void; }
type ConfiguredLogger = Configuration & Logger; “‘
In this example, ConfiguredLogger is an intersection type that amalga-

mates Configuration and Logger. Consequently, any object of the Config-
uredLogger type must adhere to both types’ properties and behaviors. In the
context of configurations and dependency injection, intersection types prove
useful when creating complex interfaces that require a nuanced combination
of several individual types.

Let’s now analyze the real - world use of intersection types in Deno
applications. Imagine a web application in which we need to dynamically
merge configurations from various sources, such as environment variables,
command - line arguments, and configuration files. We can model this
scenario using intersection types as follows:

“‘typescript interface EnvironmentConfiguration { apiUrl: string; apiKey:
string; }

interface ArgumentConfiguration { enableAnalytics: boolean; logLevel:
string; }

interface FileConfiguration { databaseUrl: string; numberOfWorkers:
number; }

type MergedConfiguration = EnvironmentConfiguration & Argu-
mentConfiguration & FileConfiguration; “‘

This way, we can express configuration merging through intersection
types, ensuring a flexible and scalable solution.

Now let’s dive into an example where we use intersection types in a
Deno application for dependency injection. Dependency injection, a popular
technique for managing dependencies in software development, helps ensure
clean, testable, and maintainable code. Take the following Deno application,
which makes requests to an external API:

“‘typescript interface HttpClient { get: (url: string) => Promise<string>;
}

interface CacheClient { get: (key: string) => Promise<string unde-
fined=”” =””>; set: (key: string, value: string) => Promise<void>;
}

type ServiceDependencies = HttpClient & CacheClient; “‘

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 106

With the concept of intersection types, we can define a ServiceDepen-
dencies type that combines HttpClient and CacheClient, representing the
dependencies required for our service. Instead of passing individual depen-
dencies to functions or instantiation, we can pass a single argument of type
ServiceDependencies.

“‘typescript async function fetchFromApi(dependencies: ServiceDepen-
dencies, url: string): Promise<string> { const cachedResponse = await de-
pendencies.cacheClient.get(url); if (cachedResponse) { return cachedResponse;
}

const response = await dependencies.httpClient.get(url); await depen-
dencies.cacheClient.set(url, response); return response; } “‘

By using intersection types, we were able to simplify dependency man-
agement and improve code readability.

To summarize, intersection types provide a powerful and flexible means
of combining multiple types in TypeScript. They allow for complex and
nuanced interfaces when dealing with configurations and dependency in-
jections in Deno applications. By embracing intersection types, developers
can ensure scalable, readable, and maintainable code in their TypeScript
projects. </string></void></string></string>

Novel TypeScript 4.x Features for Deno Development

The first notable feature in TypeScript 4.x is variadic tuple types, a powerful
new mechanism that allows developers to express variable - length tuples
more precisely. This becomes particularly useful for Deno developers when
working with functions that accept multiple arguments or Promise - related
operations. Consider the following example using ‘Promise.all‘, a common
scenario in any Deno application that deals with concurrency:

“‘typescript async function fetchData(): Promise<[string, number,
boolean]> { const [data1, data2, data3] = await Promise.all([fetch-
String(), // Promise<string> fetchNumber(), // Promise<number> fetch-
Boolean() // Promise<boolean>]);

return [data1, data2, data3]; } “‘
With TypeScript 4.x’s variadic tuple types, developers can define the

types for the returned tuple in a much more accurate and concise manner:
“‘typescript type Awaited<t> = T extends PromiseLike<infer u=””> ?

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 107

U : T; type PromiseTuple<t [unknown[]]=”” extends=”” readonly=””> =
{ [K in keyof T]: Awaited<t[k]>; };

async function fetchData(): PromiseTuple<[Promise<string>, Promise<number>,
Promise<boolean>]> { const [data1, data2, data3] = await Promise.all([
fetchString(), // Promise<string> fetchNumber(), // Promise<number>
fetchBoolean() // Promise<boolean>]);

return [data1, data2, data3]; } “‘
The improved type inference in the example above provides greater type

safety and clarity, making it simpler for developers to work with complex,
concurrent operations in their Deno applications.

Another exciting development in TypeScript 4.x is the introduction of
labeled tuple elements. This feature allows for the assignment of labels
to tuple elements, vastly improving code readability and maintainability.
Consider the following Deno function that returns a tuple combining user
and post data:

“‘typescript function getUserAndPost(): [string, string, number, string]
{ // return [userName, userEmail, postId, postTitle]; } “‘

With labeled tuple elements, developers can now express the returned
data more meaningfully:

“‘typescript function getUserAndPost(): [userName: string, userEmail:
string, postId: number, postTitle: string] { // return [userName, userEmail,
postId, postTitle]; } “‘

This added clarity becomes invaluable when working with large Deno
applications, where increased verbosity can make the codebase more readable
and easier to understand.

A third innovative feature in TypeScript 4.x is the introduction of
assertion signatures. As opposed to regular type guards, assertion signatures
allow developers to assert a condition on a value, throwing an error if it is
not met. This can help ensure that values conform to the intended types
and can be used to enforce constraints on function parameters. Consider
the following example:

“‘typescript function processText(text: unknown): string { if (typeof
text !== ”string”) throw new Error(”Invalid input”);

// process text
return result; } “‘
With assertion signatures, developers can make the code cleaner while

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 108

also providing precise type information:
“‘typescript function assertString(value: unknown): asserts value is

string { if (typeof value !== ”string”) throw new Error(”Invalid input”); }
function processText(text: unknown): string { assertString(text);
// process text
return result; } “‘
This pattern can be particularly useful for Deno developers who seek to

develop clean, maintainable code while maintaining strict type enforcement
within their projects.

Finally, TypeScript 4.x introduces the ‘ - - noUncheckedIndexedAccess‘
compiler option. When enabled, this option ensures that indexed access
expressions like ‘arr[a]‘ or ‘obj[b]‘ return a potentially ‘undefined‘ value.
This feature can prove invaluable for Deno developers who strive to write
safe, null - checked code in their applications and avoid runtime errors.
</boolean></number></string></boolean></number></string></t[k]></t></infer></t></boolean></number></string>

Advanced Type Guards, Assertion Functions, and Cus-
tom Type Guards in Deno

Modern web applications often deal with complex data types and structures.
TypeScript has a powerful type system that helps ensure type - safety and
minimize runtime errors. However, sometimes the static type checking
provided by TypeScript is not enough, and runtime type - checking becomes
necessary. This is particularly true when dealing with user input, external
APIs, or other sources of uncertainty.

In Deno, developers can leverage TypeScript’s type system to create
safe, readable, and maintainable code. By combining built - in type guards,
assertion functions, and custom type guards, developers can create robust
applications that handle potential runtime errors gracefully and ensure type
correctness throughout the application.

We start by discussing built - in type guards and their role in Deno
projects. TypeScript provides basic type guards like ‘typeof‘ and ‘instanceof‘
to help developers determine primitive types and class instances, respectively.
These type guards can be used in conditional statements, narrowing down
the possible types of a value:

“‘typescript function logNumberOrString(value: number string): void {

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 109

if (typeof value === ”number”) { console.log(”The number is”, value); }
else { console.log(”The string is”, value); } } “‘

While the built - in type guards offer a simple way to check for basic
types, assertion functions extend this feature by allowing the developer to
assert that a specific type condition is true, throwing an error if the assertion
fails. Assertion functions are a great way to enforce stricter type checking
and inform the TypeScript compiler about the expected type. The syntax
for assertion functions uses the following form:

“‘typescript function assertIsString(value: any): asserts value is string {
if (typeof value !== ”string”) { throw new Error(”Expected type string”);
} }

function processString(value: any): string { assertIsString(value); return
value.toUpperCase(); } “‘

As shown above, the ‘asserts‘ keyword informs the TypeScript compiler
that the function acts as a type guard, allowing the type - narrowing to
occur. By employing assertion functions, developers can ensure that their
code remains type - safe, even when dealing with uncertain values.

However, in many cases, the built - in type guards and the assertion
functions can be limiting, particularly when working with complex types
and conditions. Custom type guards offer the flexibility to create more
sophisticated type checks that may depend on multiple factors or hold
specific invariants. Custom type guards are similar to assertion functions,
but instead of using the ‘asserts‘ keyword, they return a boolean value
indicating whether the given value matches the expected type:

“‘typescript interface Circle { kind: ”circle”; radius: number; }
interface Square { kind: ”square”; sideLength: number; }
type Shape = Circle Square;
function isCircle(shape: Shape): shape is Circle { return shape.kind

=== ”circle”; }
function calculateArea(shape: Shape): number { if (isCircle(shape)) { re-

turn Math.PI * shape.radius * shape.radius; } else { return shape.sideLength
* shape.sideLength; } } “‘

In this example, the custom type guard ‘isCircle‘ checks whether a given
‘Shape‘ is of type ‘Circle‘. This custom type guard allows the TypeScript
compiler to narrow the input type based on the boolean result of the function.
This technique is particularly useful when dealing with complex objects

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 110

and application - specific invariants that are not expressible within the type
system.

Additionally, custom type guards can be composed to create even more
powerful type checks:

“‘typescript function isNonEmptyString(value: any): value is string {
return typeof value === ”string” && value.trim().length > 0;
}

function isPositiveNumber(value: any): value is number { return typeof
value === ”number” && value > 0; }

function isValidIdentifier(value: any): value is string number { return
isNonEmptyString(value) isPositiveNumber(value); } “‘

By combining custom type guards like ‘isNonEmptyString‘ and ‘isPos-
itiveNumber‘, ‘isValidIdentifier‘ checks whether the given value is a valid
identifier in the hypothetical application. This composition ensures that the
input passes multiple type conditions before being deemed valid.

As Deno applications evolve and their type landscape becomes more
complex, understanding and leveraging advanced type guards, assertion
functions, and custom type guards becomes crucial to create more efficient,
reliable, and maintainable applications. By embracing the full power of
TypeScript’s type system, Deno developers can ensure that their code
remains both type - safe and expressive, ultimately delivering better user
experiences and promoting the sustainable growth of their projects.

Going forward, continue to assess your application’s type safety to
identify areas where you can employ type guards, assertions, custom type
guards and beyond! By doing so, you will be better prepared to build larger
- scale applications that maintain the integrity and strength that TypeScript
and Deno offer.

Mapping Types and Indexed Access in Large Deno Ap-
plications

As developers embark on the journey of architecting large - scale Deno
applications, they often face the challenge of effectively managing and
manipulating complex data structures and their associated types. More
often than not, complex applications involve a multitude of interconnected
entities that inevitably map to different data types. In such scenarios,

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 111

TypeScript’s Mapping Types and Indexed Access Operators come to the
rescue, providing developers the means to process and obtain the desired
types through intricate type transformations.

Let’s begin with Mapping Types, a powerful TypeScript feature that
allows you to create new types by transforming properties of existing types.
Suppose you are working on an e - commerce application involving numerous
product entities, each with their associated properties like id, name, price,
and thumbnail. As the application grows, you might need to create new types
based on these product entities, such as filtered or transformed products.
This is where Mapping Types come into play, as they derive new types using
existing types, thus maintaining a single source of truth.

Consider the following example of a Product entity type:
“‘typescript interface Product { id: number; name: string; price: number;

thumbnail: string; } “‘
Now, suppose you wish to create a new type containing only the id and

name properties of the Product entity. With TypeScript’s Mapping Types,
you can use Mapped Types to accomplish this in an elegant and dynamic
manner:

“‘typescript type ProductPreview = { [K in keyof Product]: K extends
’id’ ’name’ ? Product[K] : never; }; “‘

The ‘ProductPreview‘ type generated through the Mapping Type syntax
iterates over the keys of ‘Product‘ and only retains the types associated
with ’id’ and ’name’. The result will be a new type that only contains the
id and name properties:

“‘typescript { id: number; name: string; } “‘
However, Mapping Types alone don’t always provide the solution to

the challenges posed by large - scale Deno applications. In certain cases,
developers require a more generalized approach to access specific types. This
is where Indexed Access Types come in handy.

Indexed Access Types offer a mechanism to access a type’s property by
its key, much like array indices or object key - value pairs. Consider the
following example:

“‘typescript type Id = Product[’id’]; “‘
In the example above, ‘Id‘ is assigned the type of the ’id’ property from

the ‘Product‘ type, i.e., number. This can be a powerful tool in conjunction
with Mapping Types when working with complex, interconnected types in a

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 112

Deno application:
“‘typescript type ProductUpdatePayload = { [K in keyof Product]: K

extends ’id’ ? never : Partial<product[k]>; }; “‘
The ‘ProductUpdatePayload‘ type signifies an update payload to be sent

to an API endpoint for updating a ‘Product‘. By combining Mapping Types
and Indexed Access Types, we can exclude the id property and make all
other properties partial, signifying that only a subset of these properties
needs to be sent in the update payload:

“‘typescript { name?: string; price?: number; thumbnail?: string; } “‘
These examples demonstrate the synergy of Mapping Types and Indexed

Access Types in handling the complexities of large Deno applications. With
their dynamic type manipulation capabilities, they offer developers the
means to simplify and streamline development processes without getting
lost in the intricacies of type management.

As you progress in your Deno application development, you will likely
encounter countless scenarios demanding efficient type manipulation and
mapping. Integrating Mapping Types and Indexed Access Types into your
codebase will propel you through these challenges with effortless grace.
The ability to focus on application logic, rather than wrestling with type
consistency concerns, will be invaluable as you scale and maintain your
Deno applications over time.

In the pursuit of mastering Deno and TypeScript integration, do not
overlook these advanced and robust type manipulation features. Instead,
harness their prowess and draw upon the power they offer to sculpt and
generate new types based on existing entities. Doing so will ensure that your
Deno application code remains maintainable, efficient, and most importantly,
resilient against the ever - evolving challenges of type consistency in large -
scale TypeScript development.</product[k]>

Conditional Types and Inference for Optimizing Deno
Function Overloads

Conditional types and type inference are powerful TypeScript features
that can greatly improve developer productivity, code readability, and
type safety when working with Deno applications. Conditional types allow
us to express complex type relationships and transformations, while type

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 113

inference facilitates the process of inferring the correct types for function
arguments and return values. By leveraging these features, we can optimize
Deno function overloads, making our code more scalable, maintainable, and
robust.

As we journey into the realm of conditional types, let us begin by
understanding their formation. Simply put, a conditional type takes the
form ‘T extends U ? X : Y‘, where ‘T‘ and ‘U‘ are type variables, and ‘X‘
and ‘Y‘ are types. Here, if ‘T‘ is assignable to ‘U‘, the type is resolved to
‘X‘, otherwise, it resolves to ‘Y‘. Let’s illustrate this concept with a simple
example:

“‘ type IsString<t> = T extends string ? true : false;
type A = IsString<”hello”>; // true type B = IsString<number>;

// false “‘
By combining conditional types with TypeScript’s type inference feature,

we can generate optimized function overloads that infer types based on the
input values. This can be especially useful when building Deno applications
with a variety of input types and options.

Consider a Deno module that exposes a ‘query‘ function to execute
database queries. The function optionally accepts a template literal as
input, along with query parameters represented by an object. The function
is required to return an array of records if a template literal is provided,
and a single record otherwise.

“‘ // Input query<user>(”SELECT * FROM users WHERE id = :id”,
{ id: 1 });

// Output Promise<user[]> “‘
To implement this functionality, we may have to use multiple overloads,

making our code verbose and harder to maintain. With conditional types,
we can optimize this process by describing our function using a single type.

“‘ type QueryResult<t> = T extends string ? Array<user> : User;
declare function query<t>(input: T, parameters?: T extends string ?

Record<string, unknown=””> : undefined): Promise<queryresult<t>>;
“‘

By utilizing the power of conditional types, we have condensed our
function’s multiple overloads, making it more concise and easy to maintain.

However, we have overlooked an essential aspect of our function’s re-
quirements - the promise should be resolved with an array of records if a

CHAPTER 6. ADVANCED TYPESCRIPT FEATURES FOR DENO 114

template literal is provided, and a single record otherwise. To address this
issue, we can introduce a discriminated union that differentiates between
the two possible outcomes.

“‘ type QueryOptions = { tag: ”template”; query: string; } { tag:
”record”; id: number; };

type QueryResult<t> = T extends { tag: ”template” } ? Array<user>
: User;

declare function query<t extends=”” queryoptions=””>(input: T):
Promise<queryresult<t>>; “‘

Now, when calling the ‘query‘ function, we provide an object with the
‘ tag‘ property set to either ‘”template”‘ or ‘”record”‘ to differentiate between
the expected outcomes.

“‘ const users = await query({ tag: ”template”, query: ”SELECT *
FROM users;” }); // users: Array<user>

const user = await query({ tag: ”record”, id: 42 }); // user: User “‘
In this example, the power of conditional types and type inference comes

into full view - our code is cleanly written, using a single type to describe
multiple possibilities, all while assuring type safety.

As we bid adieu to the grand realm of conditional types and inference,
we do not leave empty - handed. We depart with a newfound appreciation
and understanding of their ability to streamline and optimize our Deno
applications.

Our journey does not end here - with TypeScript’s expressive type sys-
tem, it is our prerogative to explore new frontiers, armed with the knowledge
of these powerful concepts. For those daring enough, there are many code
challenges to conquer, ever improving our applications’ architecture and
striking the perfect balance between scalability, maintainability, and type
safety.</user></queryresult<t></t></user></t></queryresult<t></string,></t></user></t></user[]></user></number></t>

Chapter 7

Architecting Deno
Applications: Project
Structure and Design
Patterns

One of the primary concerns in architecting any software project is its
overall structure. A well - planned and organized project structure in
Deno applications can lead to increased maintainability and readability for
developers, both new and experienced. To accomplish this, we can start by
separating application components into distinct directories and files based
on their functionality. For instance, we can have a ‘src‘ folder containing
the main application code, a ‘config‘ folder for project configurations, and a
‘test‘ folder for tests and test configurations.

It’s worth mentioning that Deno doesn’t impose a strict structure for
projects, leaving the developers with the flexibility to choose their preferred
organizational pattern. A common approach in Deno applications is to
organize modules by their domain functionality, such as ‘auth‘, ‘database‘,
‘utils‘, and others. Each folder can then contain all related files, such as
interfaces, classes, middleware, and even tests corresponding to that domain.

Beyond the organization of directories and files, Deno application archi-
tecture can significantly benefit from utilizing appropriate design patterns.
Design patterns are reusable solutions to common problems encountered in
software design. Leveraging these patterns in Deno applications can help

115

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

116

developers write more efficient and cleaner code, and promote modular and
testable applications.

One of the cornerstone design patterns for Deno applications is the
modular pattern. This pattern emphasizes breaking down the application
into manageable, cohesive, and loosely coupled modules, each with a single
responsibility. By using Deno’s native support for ES modules, we can
easily export and import these modules throughout the application, making
it much more maintainable and scalable. As an example, for a typical
authentication module, we can have separate files for the authentication
service, its middleware, and the corresponding controller.

Another useful pattern to consider in Deno applications is the factory
pattern. Factories are responsible for creating objects based on specific
parameters, making it easier to manage the instantiation of dependencies.
By utilizing this pattern, we can have a more centralized and flexible way of
managing dependencies and can even leverage Deno’s built - in dependency
injection capabilities. For instance, a database connection factory can create
instances of different database clients based on the application configuration
and inject them into the relevant services, allowing developers to focus on
writing business logic.

In some cases, we may also benefit from adopting the adapter pattern
to improve the compatibility and integration of external libraries or APIs
with our Deno application. This pattern essentially builds an intermediate
layer that makes the external component compatible with our application.
An example could be creating a custom logger adapter that implements a
shared interface and wraps the functionality of a third -party logging library,
giving us the freedom to swap easily between libraries or even use different
logging mechanisms based on the application’s environment or requirements.

Another crucial aspect of architecting Deno applications is the delicate
balance between performance and optimization. Clever utilization of caching,
lazy initialization, or memoization techniques, for instance, can greatly
benefit the performance of an application. Additionally, the architectural
choices we make can have significant implications on optimization and
scalability. For example, identifying bottlenecks in code execution and
employing suitable concurrency patterns like parallelism, message queues,
or event loops can help achieve a highly performant, scalable, and fault -
tolerant Deno application.

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

117

In conclusion, architecting a robust, scalable, and maintainable Deno
application is as much an art as it is a science. It involves striking the
perfect balance between the principles of separation of concerns, modular-
ity, and reusability while ensuring performance and optimization are not
compromised. The power of Deno as a platform will be truly realized when
we take hold of these principles and engrained them into the fabric of our
projects. As we venture forth into the Deno landscape, may the force of
sound architectural decisions be with us.

Introduction to Architecting Deno Applications

One way to get started with architecting your Deno application is by
understanding the modular nature of Deno. The proverbial idiom, ”divide
and conquer”, rings true in the world of software architecture. Organizing
your application into smaller, focused modules makes it easier to reason
about the structure and avoid the dreaded ”spaghetti code.” In Deno, much
like in Node.js, modules are the building blocks of any non-trivial application.

A significant distinction, however, between Deno and Node.js lies in
how these modules are imported. Deno leverages the ECMAScript module
system for importing and exporting modules using explicit extensions and
URLs. This enables a more straightforward dependency management system,
sans the complexities of ‘npm‘ and ‘node modules‘. By convention, it is
encouraged to name the module files with the ‘.ts‘ extension when working
with TypeScript and ‘.js‘ with JavaScript.

When designing Deno applications, security and permissions should
be top - of - mind. Deno adopts a secure - by - default approach, meaning
that, unlike Node.js, it does not grant any system access unless explicitly
provided by the user. Therefore, for operations that require access to the file
system, network, or environment variables, specific permission flags must
be set during script execution. Keep this in mind when structuring your
application and minimize elevated access to resources to only the necessary
modules, following the Principle of Least Privilege.

TypeScript, Deno’s first - class citizen, accelerates the software develop-
ment lifecycle with its robust static type system and advanced language
features. Utilizing TypeScript interfaces, union types, and other features
such as type inference and conditional types can lead to cleaner, more

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

118

maintainable code and ultimately a more robust application.

For example, consider a component in your application that deals with
processing various forms of data - integers, strings, or even objects. By
embracing the potential of TypeScript, you can define strict types and
interfaces for your components, facilitating self - documenting, maintainable
code, and limiting potential runtime errors.

Another aspect of architecting Deno applications lies within the broader
JavaScript ecosystem - design patterns. Classical design patterns such as
factories, adapters, decorators, and observers translate well into the Deno
and TypeScript world. In particular, adopting the middleware pattern can
lead to extensible and modular systems that can be easily enhanced or
modified as your application grows. Utilizing dependency injection and
inversion of control allows for even greater flexibility and testability of your
Deno applications.

It is also important to consider the non - functional requirements of your
application. Factors such as performance, scalability, and reliability are often
as crucial as the functional components. Performance optimizations like lazy
loading, data memoization, and debouncing can significantly impact the user
experience. For scalability and reliability, consider leveraging horizontal
scaling techniques, load balancing, and monitoring tools to ensure your
application stands firm under high traffic loads.

In conclusion, Deno, armed with TypeScript and powerful runtime
APIs, equips developers with a novel platform to architect modern web
applications. By focusing on modularity, security, advanced TypeScript
features, and adapting classical design patterns, Deno applications can be
built with robustness, maintainability, and flexibility at their core. As
you embark on this journey of architecting Deno applications, embrace
the unique qualities Deno offers, and leverage them to create innovative
solutions that stand the test of time and technological evolution. With
a solid foundation established, the next steps will involve diving deeper
into specific design patterns and application strategies to build upon this
newfound knowledge, further harnessing the true potential of Deno and
TypeScript.

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

119

Project Structure Best Practices for Deno Applications

One of the critical aspects of structuring your Deno projects is to adopt
a modular approach. The key to achieving a maintainable and scalable
project layout is to divide your application into smaller, independent, and
easily understandable units. Utilizing the import/export functionality in
TypeScript can help achieve this by organizing the code into separated files
and directories that contain related functionalities, avoiding ”God Files”
that hold an entire application’s logic.

At the top- level directory of your Deno application, you should generally
include the following files:

1. ‘deps.ts‘ for managing your project’s dependencies, acting as a single
point - of - entry for your imported libraries or other external dependencies.

2. ‘mod.ts‘ as the main module file, containing the entry point of your
application, including export statements for the various modules you have.

3. ‘config.ts‘ for handling application configurations, secrets, and envi-
ronment - specific settings.

On the directory level, there are certain structures that promote organi-
zation and code separation in a Deno application. These include:

1. ‘src‘ as the root directory for your source code and application logic.
Inside the ‘src‘, you can further divide your application code into specific
purpose folders such as controllers, models, utils, and configurations.

2. ‘tests‘ as the root directory for your testing files. Similar to the
‘src‘ directory, you can further categorize test files by their corresponding
components, such as unit - tests, integration tests, or end - to - end tests.

3. ‘public‘ or ‘assets‘ to store static files such as HTML, CSS, and front -
end JavaScript.

4. ‘middlewares‘ as the directory to contain reusable middleware func-
tions, where you can manipulate incoming requests and outgoing responses
in a Deno HTTP application.

5. ‘typings‘ for custom type declarations and global types, which are
useful in TypeScript applications to have a single location to store custom
types that are reused across your application.

When organizing your project’s files and directories, maintain a consistent
naming convention that signifies the purpose of each file. For instance, you
can use the following naming conventions as a guide:

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

120

1. ‘.controller.ts‘ for controller files that handle incoming requests and
produce appropriate responses.

2. ‘.service.ts‘ for service files containing business logic based on the
application’s models.

3. ‘.repository.ts‘ for the data access layer responsible for interacting
with databases or other storage mechanisms.

4. ‘.model.ts‘ for representing data models and defining their schemas.
5. ‘.util.ts‘ for utility functions or utility classes that are shared across

components.
To illustrate the best practices mentioned above, let’s envision a typical

Deno REST API application structure as an example:
“‘ my - deno - api/ deps.ts mod.ts config.ts public/ css/ js/ img/ src/ con-

trollers/ user.controller.ts post.controller.ts services/ user.service.ts post.service.ts
repositories/ user.repository.ts post.repository.ts models/ user.model.ts post.model.ts
middlewares/ auth.middleware.ts log.middleware.ts utils/ logger.ts helper.ts
tests/ unit/ integration/ e2e/ typings/ index.ts my custom type.d.ts “‘

The example above illustrates a well - structured Deno application layout
that separates concerns, adopts a modular approach, and employs consistent
naming conventions.

Remember that there isn’t a one - size - fits - all project structure. De-
pending on the application’s requirements and goals, the structure might
need to adapt to the specific use case. Nevertheless, following these best
practices will set a strong foundation for your Deno projects, leading to
enhanced maintainability, collaboration, and scalability.

Having discussed various aspects of structuring a Deno application,
it is our aim as developers to continually seek ways to ensure our code
remains clean, maintainable, and efficient. As we progress further into our
Deno journey, let us explore scenarios where we may take advantage of
design patterns to further enhance the modularity and organization of our
codebases.

Modular Design Patterns in Deno

To begin, consider the Single Responsibility Principle (SRP), one of the key
tenets of modular design. In essence, SRP asserts that a module should
have only one reason to change, or in other words, one responsibility. When

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

121

we adhere to SRP, we create a higher degree of cohesion within each module
and facilitate maintenance.

A simple example of applying SRP in Deno would be separating the
functions in charge of file system operations, network requests, and data
manipulation. Instead of having these functionalities bundled together in
one file, they are divided into modules that focus just on their respective
domain. Such an arrangement ensures that the code remains isolated in
case a change request comes specifically for file handling, networking, or
data processing.

Next, let’s consider the popular modularity pattern of exporting and
importing modules, which is implemented using ES Modules (ESM) syntax.
Deno supports ESM out - of - the - box, equipping developers with the means
to create clean, reusable code.

Consider a simple example of an application that interacts with a REST
endpoint. We can create a file called ‘api.ts‘ and employ the following
pattern:

“‘typescript const baseUrl = ”https://api.example.com”;
export const getResource = async (resourceId: number) => { const

response = await fetch(‘${baseUrl}/resources/${resourceId}‘); return re-
sponse.ok ? response.json() : null; }; “‘

Then, in our main application file, ‘app.ts‘, we can import and use the
‘getResource‘ function:

“‘typescript import { getResource } from ”./api.ts”;
const resource = await getResource(1); console.log(resource); “‘
This exporting and importing pattern helps you keep your code orga-

nized and creates clear boundaries between different functionalities in your
application.

Another essential modular pattern is the Revealing Module pattern,
which is often used for encapsulating logic within a function. This pattern
helps you expose only those parts of a module that should be publicly
available while keeping the inner workings private. This concept is especially
useful for managing state or handling complex configuration.

Consider the following example of a service that caches API responses
to minimize redundant network requests:

“‘typescript function createCache() { const cache = new Map<number,
any=””>();

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

122

const getResourceFromApi = async (resourceId: number) => { //
Fetch and cache logic goes here };

const getResourceFromCache = (resourceId: number) => { // Re-
trieve from cache logic goes here };

return { getResource: async (resourceId: number) => { return ge-
tResourceFromCache(resourceId) (await getResourceFromApi(resourceId));
}, }; }

export default createCache; “‘
We can use this service in our application by simply importing and

instantiating it:
“‘typescript import createCache from ”./cacheService.ts”;
const cacheService = createCache(); const resource = await cacheSer-

vice.getResource(1); “‘
Lastly, the Factory pattern is another popular modular design pattern

that you may find valuable while developing your Deno applications. Facto-
ries are functions or objects responsible for creating objects with a specific
interface without exposing the underlying object creation details. This
pattern is particularly effective when you need to handle complex object
creation or have various configurations.

Let’s consider a scenario in which we must integrate multiple APIs, each
with its own data format. We can create a factory function that takes the
response format as input and instantiates the appropriate parser for the
given format:

“‘typescript export function createParser(parserType: ”json” ”xml”)
{ if (parserType === ”json”) { return { parse: (data: string) =>
JSON.parse(data), }; } else if (parserType === ”xml”) { return { parse:
(data: string) => { // XML parsing logic goes here }, }; }

throw new Error(‘Invalid parser type: ${parserType}‘); } “‘
In our application, we can then use this factory function to create the

appropriate parser:
“‘typescript import { createParser } from ”./parserFactory.ts”;
const parser = createParser(”json”); const parsedData = parser.parse(rawData);

“‘
In conclusion, adhering to modular design patterns in Deno fosters a

maintainable, organized, and efficient codebase. By leveraging patterns such
as the Single Responsibility Principle, exports and imports, the Revealing

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

123

Module pattern, and the Factory pattern, you can create Deno applications
that scale with ease and facilitate team collaboration. As you continue to
explore Deno, you will find many of these patterns fused into the devel-
opment workflows, creating a rich and expressive landscape for building
web applications. Strive to become proficient in these patterns and make
it your second nature to employ them in your Deno projects. Doing so
will ensure your applications embrace the core principles of modular design,
empowering them to stand the test of time.</number,>

Implementing Custom Middleware for Deno Applica-
tions

To understand the need for custom middleware in a Deno application,
consider the following example. You are building a REST API with au-
thentication, and you have multiple routes that require different levels of
authorization. By implementing a custom middleware function to handle
various authorization levels, you can save time and maintain a clean codebase
by reusing the authorization logic across your API.

Let’s start by implementing a custom middleware function to log requests
in a Deno application. Create a new file called ‘loggerMiddleware.ts‘.

“‘typescript export async function loggerMiddleware(ctx: any, next:
() => Promise<unknown>) { const requestStart = Date.now(); await
next(); const requestDuration = Date.now() - requestStart; console.log(‘Request
duration: ${requestDuration} ms‘); } “‘

The ‘loggerMiddleware‘ function takes in two parameters:
1. ‘ctx‘ - The context object, which typically includes the request

and response objects. 2. ‘next‘ - A function that progresses to the next
middleware in the chain.

In this example, the middleware function logs the time it took for the re-
quest to be processed by awaiting the ‘next‘ function, which invokes the next
middleware in the chain. When it finishes processing, the loggerMiddleware
computes the request’s duration and logs it to the console.

We can now use the ‘loggerMiddleware‘ in our server setup. Create a
new file called ‘server.ts‘ and import the ‘loggerMiddleware‘.

“‘typescript import { serve } from ”https://deno.land/std/http/server.ts”;
import { loggerMiddleware } from ”./loggerMiddleware.ts”;

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

124

const server = serve({ port: 3000 });
for await (const req of server) { await loggerMiddleware({ req }, async

() => { req.respond({ body: ”Hello, world!” }); }); } “‘
The ‘loggerMiddleware‘ is used in the for await loop to handle incoming

requests, which will log the request duration and respond with ”Hello,
world!”. To test it, run ‘deno run - - allow - net server.ts‘ and make a GET
request to ‘http://localhost:3000‘ from your browser or another tool like
curl or Insomnia. You should see the request duration logged to the console.

Now, let’s consider a more complex scenario: creating a middleware to
handle authentication. Continuing from the previous example, let’s create a
simple authentication middleware in a new file called ‘authMiddleware.ts‘.

“‘typescript export async function authMiddleware(ctx: any, next: ()
=> Promise<unknown>) { const authHeader = ctx.req.headers.get(”authorization”);

if (!authHeader authHeader !== ”Bearer my-valid-token”) { ctx.req.respond({
status: 401, body: ”Unauthorized” }); return; }

await next(); } “‘
In this example, the ‘authMiddleware‘ checks if the ‘authorization‘ header

exists and is equal to ”Bearer my - valid - token” (this is a hardcoded token
for simplicity’s sake, but in a real - world scenario, you’d usually use a
more robust mechanism for authentication, such as JWT). If the check fails,
it responds with a 401 status code, indicating the access is unauthorized.
Otherwise, it calls the ‘next‘ function and allows the execution to proceed.

To use the authentication middleware, update the ‘server.ts‘ file as
follows:

“‘typescript // other imports import { authMiddleware } from ”./auth-
Middleware.ts”; //

for await (const req of server) { await loggerMiddleware({ req }, async
() => { await authMiddleware({ req }, async () => { req.respond({
body: ”Hello authenticated user!” }); }); }); } “‘

Now, if you try to make an unauthenticated request to ‘http://localhost:3000‘,
you should receive a 401 ”Unauthorized” response. To make an authenticated
request, set the ‘authorization‘ header to ”Bearer my - valid - token”.

Middleware in Deno greatly simplifies common tasks such as logging,
authentication, and error handling. By leveraging custom middleware,
developers can achieve code reusability, modularity, and maintainability
while constructing complex, high - performance applications. The power

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

125

of custom middleware in Deno highlights the versatility and elegance of
the platform and exemplifies its tremendous potential for creating scalable,
robust, and secure web applications. As you continue to explore Deno and
TypeScript, consider using middleware as a powerful means to enhance
and streamline your applications, revolutionizing the way you architect and
develop web services.</unknown></unknown>

Dependency Injection and Inversion of Control in Deno

To understand Dependency Injection, let us think about how objects depend
on each other in an application. Typically, high - level components depend
on lower - level components to get their work done. This direct dependency
can make the code difficult to maintain as the components become tightly
coupled, hard to change, and challenging to test and reuse. DI is a tech-
nique that breaks this coupling by injecting a lower - level component (the
dependency) into the higher - level component (the dependent). Inversion
of Control, on the other hand, is the overall design principle that enables
dependency injection, where the control of creating and managing depen-
dencies is given to an external source, sometimes referred to as the ”IoC
container.”

Let’s dive in with a simple example to understand how Dependency
Injection can be implemented in a Deno application using TypeScript.

Consider a Deno application that interacts with a database to perform
CRUD operations. We have a ‘Database‘ class that represents the database
connection and provides the CRUD methods. We also have a ‘UserService‘
class that is responsible for managing the user entities and utilizes the
‘Database‘ class.

“‘typescript // database.ts class Database { // implementation details }
// userService.ts class UserService { constructor(private readonly database:

Database) { }
// implementation details } “‘
Without DI, the ‘UserService‘ might have instantiated the Database

class directly within its constructor, making the two classes tightly coupled
and harder to test or change. By leveraging Dependency Injection, we pass
the ‘Database‘ object as a parameter in the ‘UserService‘ constructor so
that it doesn’t depend on the creation process. This approach makes the

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

126

UserService class more modular, testable, and easier to maintain.
Now let us discuss some practical techniques to implement Dependency

Injection effectively in Deno applications.
Factories
A factory pattern can be employed to create instances of the dependencies

and manage their lifecycle. This pattern takes the responsibility of object
creation away from the dependent class, giving us more control over the
dependencies and their creation process.

“‘typescript // factories.ts function createDatabase(): Database { //
Create and configure the database return new Database(/* configuration
*/); }

function createUserService(database: Database): UserService { return
new UserService(database); } “‘

Using these factories, we can create instances of the ‘Database‘ and
‘UserService‘ and ensure we follow the IoC principle by giving control of the
dependencies to an external source.

Interfaces and Inversion of Control Containers
In larger and more complex applications, the use of interfaces can be

beneficial in abstracting the concrete implementations and focusing on
the public API that the dependencies should provide. An Inversion of
Control Container can be used to register the interfaces and their concrete
implementations, resolving the dependencies automatically.

“‘typescript interface IDatabase { // public API }
class Database implements IDatabase { // implementation details }
// ioc.ts class IoCContainer { private static instances: { [key: string]:

any } = {};
public static register<t>(name: string, instance: T) { this.instances[name]

= instance; }
public static resolve<t>(name: string): T { return this.instances[name];

} }
// Register the instances in IoC Container IoCContainer.register<idatabase>(”Database”,

new Database()); “‘
The IoCContainer class holds the instances of the dependencies and

provides methods for registering and resolving them. This container can be
used to manage the application - wide dependencies efficiently by allowing
us to have a centralized place to resolve and maintain them.

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

127

In conclusion, Dependency Injection and Inversion of Control funda-
mentally change the way we design and structure our Deno applications.
This novel approach to application architecture ensures clean, modular,
and testable code, ultimately resulting in applications that are easier to
maintain and evolve. The use of interfaces, factories, and IoC Containers
help us achieve these goals, leading to a brighter, more maintainable web
landscape where Deno and TypeScript set the stage for a new generation of
applications.</idatabase></t></t>

Deno Specific Design Patterns: Factories, Adapters, and
Decorators

Factories
Factory patterns are widely used in Deno -based applications to encapsu-

late the complexity of creating objects of a given type, especially when they
involve intricate logic and dependencies. In Deno, you will often encounter
factory functions that create and return instances of a specific class or
interface, which fosters modularity and code reusability.

Consider an example scenario where we need to create instances of a
‘DatabaseConnection‘ class, responsible for connecting to different databases
based on configuration details. A simplified version of the class might look
like this:

“‘typescript class DatabaseConnection { constructor(private config: DatabaseC-
onfig) {}

connect() { // Connects to the database using the provided configuration.
} } “‘

Instead of instantiating the ‘DatabaseConnection‘ class directly, we could
create a factory function to handle the creation logic:

“‘typescript function createDatabaseConnection(config: DatabaseCon-
fig): DatabaseConnection { // Perform any necessary initialization or
configuration const connection = new DatabaseConnection(config);

// Additional logic, e.g., validating the configuration
return connection; } “‘
This approach allows us to decouple the creation and configuration

of ‘DatabaseConnection‘ instances, making our code more modular and
maintainable.

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

128

Adapters
Deno applications frequently interact with diverse libraries and APIs,

which have their distinct interfaces and methods. The Adapter pattern is
often employed to reconcile such disparities, converting the interface of one
class or module into another interface the client expects.

Imagine that we have a logger module with a specific logging interface,
and we want to use a third-party logging library that has a different interface.
Instead of modifying the external library or modifying our codebase, we can
leverage the Adapter pattern to connect these two interfaces.

Here’s an example of an adapter for our hypothetical situation:
“‘typescript import ThirdPartyLogger from ”some - logging - library”;
interface Logger { log(message: string): void; error(message: string):

void; }
class AdapterLogger implements Logger { private thirdPartyLogger:

ThirdPartyLogger;
constructor() { this.thirdPartyLogger = new ThirdPartyLogger(); }
log(message: string): void { this.thirdPartyLogger.write(message, ”log”);

}
error(message: string): void { this.thirdPartyLogger.write(message, ”er-

ror”); } } “‘
This ‘AdapterLogger‘ class implements the ‘Logger‘ interface we expect in

our application while utilizing the third -party logging library’s functionality
behind the scenes.

Decorators
The Decorator pattern enables us to add new behaviors to objects

without modifying their structure or affecting other instances of the same
class. In TypeScript, decorators are particularly powerful because they
allow us to attach metadata, methods, or properties to classes, methods,
and properties at design - time.

Let’s consider an example. Suppose we have a ‘User‘ class that represents
a user in our application, and we would like to add caching to the ‘getUser‘
method to improve its performance.

“‘typescript class User { async getUser(id: number): Promise<userdata>

{ // Fetch user data from the database. } } “‘
Instead of altering the ‘User‘ class directly, we could create a decorator

that provides the caching functionality:

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

129

“‘typescript function cache<t (args:=”” any[])=”” extends=””> any>(func:
T): T { const cache = new Map<string, returntype<t=””>>();

return (function (args: Parameters<t>): ReturnType<t> { const
key = JSON.stringify(args); if (cache.has(key)) { return cache.get(key) as
ReturnType<t>; } const result = func(args); cache.set(key, result); return
result; } as unknown) as T; } “‘

Now we can use the ‘cache‘ decorator to augment the ‘getUser‘ method:
“‘typescript class User { @cache async getUser(id: number): Promise<userdata>

{ // Fetch user data from the database. } } “‘
By implementing these design patterns in our Deno applications, we gain

numerous advantages, including modularity, reusability, and maintainability.
Moreover, through the inherent flexibility of patterns such as Factories,
Adapters, and Decorators, we can easily extend and modify our applications
to meet future requirements.

As we move forward in our exploration of Deno and TypeScript, it’s
important to consider more intricate design patterns and how they can har-
moniously integrate with the unique characteristics of the Deno ecosystem.
Embrace the challenge of crafting elegant solutions, and let the patterns we’ve
discussed serve as a foundation for your ever - evolving repertoire of Deno de-
velopment strategies.</userdata></t></t></t></string,></t></userdata>

Application Configuration and Environment Manage-
ment with Deno

Application configurations can vary greatly depending on the project. Com-
mon examples include API keys, database connection settings, caching
policies, and accessing environment - specific content. In the context of Deno,
achieving a consistent and standardized configuration method involves three
key elements: Environment variables, configuration files, and custom logic
in your application’s TypeScript code.

Environment variables provide a simple yet effective medium of sharing
configuration data with your application across different environments, such
as development, staging, and production. Deno enforces strict security
policies when it comes to accessing these environment variables, requiring
you to provide explicit permissions. To read environment variables in Deno,
you’ll need to use the ‘Deno.env.get(”KEY”)‘ function and ensure that you

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

130

grant the ‘ - - allow - env‘ flag when running your application.
While environment variables are indispensable, storing complex configu-

ration data can be challenging. In such cases, configuration files with JSON
or other structured formats are a great way to manage your application’s
configurations. A common approach is to maintain separate configuration
files for different environments, such as ‘config.development.json‘, ‘con-
fig.staging.json‘, and ‘config.production.json‘, with a shared template in
your project’s git repository. To access the configurations in your Deno
application, you can utilize Deno’s built - in file APIs. You’ll also need to
ensure permission for file access is granted while running your application.

With environment variables and configuration files in place, the next
step is to implement custom logic in your TypeScript code to tie everything
together. One widely used method is to create a central configuration module
that handles loading and merging configuration data from environment
variables and configuration files. Exporting a unified configuration object in
this module will make it easy for other parts of your application to access
configuration values. This approach also allows you to introduce functions
or helper utilities for transforming and validating configuration data before
exporting, ensuring that your application runs with the correct settings.

Altogether, seamless organization and management of application con-
figurations in Deno stem from the three key building blocks outlined above.
Beyond these basics, you can explore advanced techniques to refine your
configuration system further. For instance, you can encrypt sensitive settings
like API keys to prevent unauthorized access or include caching mecha-
nisms to reduce resource usage. Additionally, integrating with third - party
configuration management tools like HashiCorp Vault, Consul, or etcd can
provide efficient and standardized solutions for managing configurations
across teams and projects.

In closing, remember that an effective configuration management system
for your Deno projects heavily depends on understanding the relationship
between environment variables, configuration files, and the custom logic
of your application. By employing industry best practices and striving for
consistent patterns in your TypeScript code, you open up the doors to many
practical benefits: an enhanced ability to cope with changing requirements,
bolstered security measures, easier tracking of version history, and optimized
resource usage. Remember, it’s not all about configurations themselves,

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

131

but the connections between them that give life to your Deno masterpiece.
As we move forward and explore additional advanced topics, remember to
take the knowledge gained here and apply these principles to other aspects
of application architecture and design, elevating your Deno skills to new
heights.

Error Handling and Logging Strategies in Deno Appli-
cations

To start with, it’s essential to recognize that Deno applications do not handle
uncaught exceptions by default. In other words, when an error is thrown
and not caught by a try - catch block, the Deno application will terminate
with an error message, leaving it effectively shut down until it’s restarted.
This behavior emphasizes the importance of handling errors effectively in
Deno applications.

A fundamental error handling strategy is the use of try - catch blocks
around areas of code that might throw exceptions. For example, when using
the Deno runtime API to read or write files, there’s a possibility that errors,
such as file access issues, can occur. Wrapping such operations in a try -
catch block ensures that your application can handle errors gracefully and
continue running without abrupt termination.

In addition to using try - catch blocks, developers should become familiar
with creating custom error classes that extend the built - in Error class.
These custom error classes allow for more specific and informative error
messages and behaviors. For example, creating a custom FileAccessError
class can indicate that an error occurred while trying to access a file, which
can be caught and treated specifically in catch blocks. This approach also
allows for more comfortable debugging and better understanding of the
causes of the issues.

Asynchronous programming is a core concept in Deno applications,
making it essential to understand how to handle errors in asynchronous
contexts. For promise - based asynchronous code, developers can use the
.catch() method on promises to handle errors. With async/await syntax,
wrapping code in a try - catch block works as expected, allowing for an
effortless and consistent error handling strategy across both synchronous
and asynchronous code.

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

132

Now that we’ve covered some essential error handling strategies let’s
focus on logging. Proper logging techniques not only provide insights into
your application’s behavior but also aid in debugging problems quickly,
ultimately improving the overall stability of your project.

Deno provides a built - in log module that supports different log levels
(such as debug, info, warning, and error), allowing developers to log messages
at the appropriate severity. Using the built - in logger allows for a unified
approach to logging across the entire application while integrating seamlessly
with Deno’s permission system.

When configuring logging, it’s essential to think about where you want
the logs stored. They can be written directly to console, sent over the
network to a remote logging service, or written to a local file system. In
addition to using the built - in logger, Deno’s powerful ecosystem offers a
variety of third - party logging libraries, giving you the flexibility to choose
one that best suits your needs and requirements.

To set up an efficient logging system, consider creating a dedicated
logging module that wraps your chosen logger and provides different log
interfaces for debug, information, warnings, and errors. By using this logging
module throughout your application, it’s easier to maintain a consistent
logging approach, even if you decide to change the underlying logger in the
future.

While implementing logging and error handling in your Deno application,
always consider security risks and adhere to best practices. Ensure that
sensitive information, such as passwords or authentication tokens, is never
logged, and limit the exposure of logged data. Deno’s permission system
can assist you in preventing unauthorized access to log data as well.

In conclusion, robust error handling and logging techniques are paramount
in developing maintainable and secure Deno applications. By employing
these strategies and leveraging Deno’s permission system, you can foster
a resilient and efficient development experience, improving not only your
overall project stability but also its maintainability in the long run. As we
continue to explore further aspects of architecting and building Deno appli-
cations, always remember that quality error handling and logging practices
lay the foundation for more advanced patterns and strategies to emerge.

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

133

Utilizing TypeScript Decorators for Clean and Maintain-
able Deno Code

One of the main strengths of decorators in TypeScript is their ability to
wrap around components such as classes, methods, properties, and accessors,
and modify or extend their behavior without altering the original source
code. This aspect of decorators is particularly useful in Deno applications,
where modular and scalable design is crucial to fostering maintainability and
adaptability in the face of evolving requirements and growing codebases.

Let’s begin by discussing the four most common types of decorators, and
their use cases in Deno applications.

Class Decorators are used to extend or modify class definitions. They
can be utilized to add metadata, modify class structures, or wrap class
instances with additional functionality. In Deno projects, class decorators
can be employed to perform actions such as logging the creation of instances
or injecting dependencies into constructors.

“‘typescript function LogCreation<t (args:=”” any[]):=”” extends=””
new=”” {=”” {}=”” }=””>(constructor: T) { return class extends con-
structor { constructor(args: any[]) { super(args); console.log(‘Created
instance of ${constructor.name}‘); } }; }

@LogCreation class MyClass { constructor() { // } } “‘
Method Decorators are attached to method definitions and provide a way

to observe, modify, or replace them. These decorators are useful in Deno
applications for implementing cross -cutting concerns such as authentication,
validation, or caching without cluttering the main code paths.

“‘typescript function Authenticate(target: Object, propertyKey: string
symbol, descriptor: PropertyDescriptor) { const originalMethod = descrip-
tor.value;

descriptor.value = async function (args: any[]) { if (/* authentication
logic */) { const result = await originalMethod.apply(this, args); return
result; } else { throw new Error(’Unauthorized’); } };

return descriptor; }
class ApiController { @Authenticate async getUsers() { // fetch data

from the database or external API } } “‘
Property Decorators define custom behavior for properties, typically by

managing access to their underlying values or applying validations. In Deno

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

134

applications, property decorators can enforce consistency and security in
data - bound properties and define relationships between different models.

“‘typescript function ReadOnly(target: Object, propertyKey: string
symbol) { const key = Symbol(propertyKey.toString());

Object.defineProperty(target, propertyKey, { get: function () { return
this[key]; }, set: function (value: any) { if (this[key] === undefined) {
this[key] = value; } else { throw new Error(‘Property ’${propertyKey.toString()}’
is read - only‘); } }, }); }

class User { @ReadOnly id: number; } “‘
Accessor Decorators, sometimes referred to as ”getter/setter decorators,”

control access to properties by wrapping around getters and setters. Accessor
decorators can ensure that input values meet certain criteria or make complex
computations based on input data in Deno applications.

“‘typescript function DefaultValue(defaultValue: number) { return func-
tion (target: Object, propertyKey: string symbol, descriptor: PropertyDe-
scriptor) { const originalGet = descriptor.get;

descriptor.get = function () { const value = originalGet.call(this); return
value === undefined ? defaultValue : value; };

return descriptor; }; }
class Metrics { private responseTime: number;
@DefaultValue(0) get responseTime(): number { return this. responseTime;

}
set responseTime(value: number) { this. responseTime = value; } } “‘
By leveraging the power of TypeScript decorators, your Deno code can

be more modular, reusable, and maintainable. This allows you to focus on
implementing core features and growing your application without getting
bogged down by boilerplate, plumbing, and other low- level concerns. It also
fosters a standardized approach to development across your team, making
it easier to onboard new developers, review code, and refactor existing
functionality as needed.

In the world of evolving and demanding web application development,
where chaos is always lurking, TypeScript decorators can be your talisman
for taming the demons of complexity and crafting elegant, maintainable
Deno applications. As we move forward and dive deeper into advanced topics,
always remember that powerful tools like decorators can be combined with
other TypeScript features and Deno abstractions, unifying your codebase

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

135

and illuminating the path to success.</t>

Integrating Design Patterns: A Real - World Deno Ap-
plication Example

To provide a meaningful experience to its users, TastyMeals must be built
on a handful of core app features: user authentication, searching for meals,
placing orders, tracking delivery, and processing payments. By dissecting
these features, we will discuss the integration of some key design patterns,
such as the Factory, Adapter, Decorator, and Observer patterns.

Starting with the user authentication process, TastyMeals allows users
to sign up and log in using different methods such as email/password com-
bination, Google, or Facebook. To implement these different authentication
strategies, we employ the Factory pattern to create different authentication
provider classes based on the user’s input. The Factory pattern helps us main-
tain a flexible and extensible authentication system, allowing TastyMeals to
support other authentication methods in the future without changing the
core logic.

Now that our users can sign up and log in, we move on to the meal
search functionality. Users can search for meals using a variety of filters,
such as cuisine type, price range, and distance. This is the perfect time
to utilize the Decorator pattern, which will enable us to dynamically add
filter capabilities to a base meal search functionality. Consequently, adding
or removing new filter options would no longer result in substantial code
changes across the application since the Decorator pattern allows for a clean
separation of concerns.

TastyMeals also needs to connect to different external APIs to access
relevant data, such as geolocation services and payment gateways. This is
where the Adapter pattern comes into play, allowing us to create wrappers
around those APIs with a consistent interface. By doing so, we can easily
switch between different API providers without refactoring the entire appli-
cation. In essence, the Adapter pattern serves as a translator, providing a
smooth and unified experience as the application interacts with different
external services.

For tracking delivery and managing notifications, we introduce the
Observer pattern, establishing a communication system that enables the

CHAPTER 7. ARCHITECTING DENO APPLICATIONS: PROJECT STRUC-
TURE AND DESIGN PATTERNS

136

application components to ”observe” and respond to changes in other com-
ponents. In our case, when the status of an ongoing delivery is updated
(i.e., ”in transit” or ”completed”), the Observer pattern allows for automatic
notifications sent to the corresponding users, consistently keeping them
informed about their order’s progress.

With these design patterns integrated into the core functionalities of
TastyMeals, we can now move toward building an efficient and maintainable
application using Deno and TypeScript. While the Factory, Adapter, Deco-
rator, and Observer patterns are not an exhaustive list of design patterns for
TastyMeals, they demonstrate how incorporating them into the application
can result in a robust system capable of adapting to change and expansion.

In conclusion, let’s reflect upon the importance of design patterns in
the development lifecycle of a Deno application. By interweaving design
patterns with the core functionalities of our TastyMeals example, we’ve
illustrated how these reusable solutions go hand - in - hand in ensuring a
clean, extensible, and maintainable codebase. As developers venture into the
world of Deno and TypeScript, recognizing and correctly employing design
patterns will serve as guidance in crafting well - structured applications
capable of seamlessly adapting to the ever -changing technological landscape.
As we move forward, let’s keep exploring the vast capabilities Deno offers
and continue to push the boundaries of modern web development.

Chapter 8

Creating a REST API
with Deno and TypeScript

Let’s begin by setting up the project structure for a Deno - powered REST
API. First, create a new folder for your project and navigate to the folder
using your terminal or command prompt. We recommend following a
modularized approach with file organization. Create subdirectories such
as ’src’, ’controllers’, and ’models’ within the main folder to house the
TypeScript files representing the API endpoints, controllers, and data models,
respectively.

To facilitate routing, we require a routing library. For this example,
we will be using the popular ’oak’ library (deno.land/x/oak). Begin by
importing the necessary modules from the oak library, such as ’Application’,
’Router’, and ’Middleware’:

“‘typescript import { Application, Router, Middleware } from ”https://deno.land/x/oak/mod.ts”;
“‘

Next, initialize a new Application instance, an essential step to create
the server and manage requests and responses:

“‘typescript const app = new Application(); “‘
To manage different API operations - such as GET, POST, PUT, and

DELETE requests - instantiate a new Router object:
“‘typescript const router = new Router(); “‘
Following the instantiation, define the various routes you want to support

in the API. For instance, if our API manages a collection of items, we can
create a GET request route providing a list of items:

137

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 138

“‘typescript router.get(”/items”, async (context) => { // Retrieve
items, usually from a data source like a database const items = [] //
Example: pretend array of items

// Set response body and type context.response.body = items; con-
text.response.type = ”application/json”; }); “‘

Define other routes for different API requests likewise. With the routes
defined, the next step is to associate the router with the application:

“‘typescript app.use(router.routes()); app.use(router.allowedMethods());
“‘

Finally, start the server by instructing the application to listen on a
specific port:

“‘typescript app.listen({ port: 8000 }); “‘
To handle the application logic, such as querying a database, validating

requests, and managing underlying resources, use controllers dedicated to
specific tasks. By implementing these tasks in separate functions stored in
the ’controllers’ folder, your code base remains organized and maintainable.

For instance, you may have a ItemController class that retrieves a list of
items when the aforementioned ’/items’ route is accessed:

“‘typescript class ItemController { static async getItems(context: any)
{ // Get the items from a database, for instance const items = []

// Set response body and type context.response.body = items; con-
text.response.type = ”application/json”; } } “‘

In your route definition, import the controller and link the corresponding
route to the respective controller function:

“‘typescript import { ItemController } from ”./controllers/ItemController.ts”;
router.get(”/items”, ItemController.getItems); “‘
Data models represent the structure and validation patterns for the data

you’re managing. Define your models in the ’models’ folder. In our items
example, you might assign an interface representing a single item:

“‘typescript interface Item { id: number; name: string; description:
string; price: number; } “‘

Leverage TypeScript’s type - checking capabilities to validate requests
and response data thoroughly. You can use type guards and interfaces,
along with an extensive set of custom validation logic as needed.

When authentication and authorization become necessary for your REST
API, explore options such as JSON Web Tokens (JWT) and OAuth for

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 139

secure authentication. Remember, Deno prides itself on enhanced security,
so it naturally provides APIs for cryptographic operations, such as hashing
and encryption.

Last but certainly not least, test your REST API endpoints thoroughly.
Deno ships with a built - in testing framework that simplifies the addition
of testing capabilities to your project. Further enhance your project by
incorporating third-party testing libraries for advanced features like mocking
and stubbing.

Introduction to REST APIs in Deno and TypeScript
Context

REST (Representational State Transfer) is a software architectural style
that has become the go - to choice when designing scalable and maintainable
web applications. Its primary principles revolve around organizing resources
accessible via standardized HTTP methods, providing a simplified, stateless
and cacheable interface for data manipulation. With the rise of TypeScript
and the birth of the Deno runtime, building REST APIs now offers an
enhanced development experience and improved performance, security, and
maintainability.

With Deno, developers can leverage the benefits of both the TypeScript
language and Deno’s modern runtime features. One key advantage that sets
Deno apart from Node.js is its enhanced security model, which not only
provides a safe sandbox environment but also enforces strict permissions
when accessing the filesystem, network, and other runtime capabilities. This
granular control system is essential when designing and deploying REST
APIs, as it helps to prevent unauthorized access and minimize potential
security vulnerabilities.

Yet, another significant benefit that TypeScript brings to Deno - based
REST APIs is the type safety and improved tooling support it offers. Type
safety enables developers to catch errors at compile-time rather than runtime,
thereby reducing bugs and improving overall code quality. Additionally,
sophisticated refactoring, autocompletion, and code navigation features
offered by popular IDEs, such as Visual Studio Code, JetBrains WebStorm,
and Sublime Text, contribute to increased productivity and a smoother
development process.

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 140

When it comes to building a REST API in Deno, the Oak middleware
framework is a popular choice among developers. Oak is inspired by the
widely used Express.js framework in the Node.js ecosystem and provides a
similar interface for routing, middleware composition, and request/response
handling. Oak enables developers to define routes, seamlessly manage HTTP
requests, and handle middlewares such as authentication, validation, and
logging.

Consider a scenario where we are designing a REST API to manage a
simple task management system. To create a new task, we can define an
HTTP POST route as follows:

“‘typescript import { Application, Router } from ”https://deno.land/x/oak/mod.ts”;
const router = new Router(); router.post(”/tasks”, async (context)

=> { const task = await context.request.body().value; // Perform val-
idation or other logic on the task object context.response.status = 201;
context.response.body = { message: ”Task created successfully”, task }; });

const app = new Application(); app.use(router.routes()); app.use(router.allowedMethods());
await app.listen({ port: 8000 }); “‘
Here, we have defined a simple POST route that accepts a task object in

the request body, performs some validation or processing on the task, and
then returns a response with a 201 status code, indicating that the resource
has been created.

TypeScript interfaces can also be utilized to improve the clarity and
maintainability of the API code. Instead of working with untyped or
partially typed objects, explicit interfaces can be defined for API entities.
For instance, we can define an interface for tasks as follows:

“‘typescript interface Task { id: number; title: string; description: string;
status: ”todo” ”in - progress” ”completed”; createdAt: string; updatedAt:
string; } “‘

By defining such interfaces, we ensure that the task object adheres to
the specified structure, enhancing the readability and maintainability of the
code. Additionally, this gives developers better control over the data flow
within the API.

As demands for real - time updates and responsive user experiences
increase, REST APIs should be designed to scale gracefully and provide a
unified interface for handling data. With Deno and TypeScript, a new era
of web API development has emerged, enabling developers to build robust,

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 141

secure, and maintainable applications that cater to the ever - evolving needs
of the modern web.

The journey of crafting a REST API with Deno and TypeScript has just
begun. As we dive deeper into more advanced topics - such as implementing
authentication and authorization, validating API requests, integrating query
parameters, and testing API endpoints - we will not only sharpen our
understanding but also discover the immense potential that Deno and
TypeScript have to offer in revolutionizing the way we design and develop
web applications.

Setting Up a REST API Project: Dependencies and
Initialization

Setting up a well - built and automated REST API is an essential aspect of
many modern applications. Deno and TypeScript offer a variety of tools
and patterns that can give you extraordinary control and flexibility in your
projects, with a special emphasis on type - safety and clean code principles.
As developers start piecing together these powerful components, the foun-
dation being laid must have elements such as Dependency management,
Initialization data, and boilerplate incorporated efficiently.

Creating a REST API with Deno starts by specifying the required
dependencies. Using JavaScript was a notoriously difficult task in earlier
days due to the challenges in managing dependencies; but, Deno simplifies
it, providing an elegant URL - based approach. Instead of using a package
manager like npm, dependencies in Deno can be imported directly from
URLs. To exemplify this, let’s assume that we are using the Oak middleware
for our REST API; the ’deps.ts’ file could look like this:

“‘typescript // deps.ts export { Application, Router } from ”https://deno.land/x/oak/mod.ts”;
“‘

In the deps file, we are utilizing Deno’s flexibility to import specific
components, such as ’Application’ and ’Router’ from the Oak middleware,
and export them for later use. The deps file helps centralize our project’s
dependencies, making it easier to update and maintain them.

Continuing with the initialization process, we can create a file called
’app.ts,’ which is the entry point to our REST API. This file is responsible
for initializing the application, registering the required middleware, as well

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 142

as handling the request/response lifecycle and starting the server. A simple
’app.ts’ file using Oak middleware can be crafted as follows:

“‘typescript // app.ts import { Application } from ”./deps.ts”;
const app = new Application();
app.use(async (context, next) => { console.log(‘Received request:

${context.request.method} ${context.request.url}‘); await next(); });
app.use(router.routes()); app.use(router.allowedMethods());
app.addEventListener(”listen”, ({ hostname, port }) => { console.log(‘Server

listening on ${hostname ”localhost”}:${port}‘); });
await app.listen({ port: 8000 }); “‘
In this file, all the pieces we need to create our REST API are put

together, initializing the Oak ’Application’ instance and registering a
simple logging middleware. The ’use’ statement enables developers to
chain asynchronous functions that are executed sequentially during the
request/response lifecycle. This middleware is a crucial factor in the project,
processing incoming requests and generating the proper responses.

The final part of the setup deals with the project structure. We recom-
mend following a scalable folder structure, such as this:

“‘ src/ api/ my - resource/ controller.ts router.ts deps.ts app.ts “‘
By organizing your Deno REST API in this structure, resources are

easily accessible, each with their independent controllers and routers. The
easy organization facilitates decoupling and leads to a more modular and
maintainable codebase.

With our dependencies, initialization, and folder structure in place, we
are ready to dive into the specifics of creating and handling our REST API’s
various endpoints. Leveraging the strong typing, powerful middleware, and
efficient request handling provided by both Deno and TypeScript, developers
will craft a secure, highly - scalable, and maintainable application.

Armed with well - laid foundations for our REST API application, we
can boldly venture into the next piece of our development journey. The next
stop brings forth discussions about creating, implementing, and organizing
API routes, structuring requests, and building a systematic understanding
of REST API endpoints and their dynamic capabilities with Deno. This,
in turn, will open up avenues to learn how to harness the full potential of
Deno and TypeScript while working with powerful REST APIs.

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 143

Defining API Routes: GET, POST, PUT, DELETE

The GET method is primarily used for retrieval of resources from an API
endpoint. These resources may represent various entities within your appli-
cation, such as users, products, or orders. When designing the API, it is
important to follow the RESTful conventions of structuring URLs as nouns
that describe the resources being accessed. When handling GET requests,
your endpoint should not have any side effects on the server state. As an
example, to retrieve a list of users, you might define a route like ’/users’
with a GET method handler:

“‘typescript app.get(’/users’, getUsers); “‘
The handler function ‘getUsers‘ would be responsible for fetching data

from a data source and sending it back to the client as JSON.
POST method is typically used for creating new resources in the API.

For instance, a common use case would be to add a new user to the system.
To define the route, you follow a similar approach as with the GET method,
except you use ‘app.post‘ instead:

“‘typescript app.post(’/users’, createUser); “‘
The handler function, ‘createUser‘, needs to parse incoming data from

the request body, validate it, and handle the actual creation of the resource.
It is essential to return proper HTTP status codes to indicate the result of
the operation. For instance, returning a 201 Created status code signals
that the resource has been created successfully, while a 400 Bad Request
indicates invalid or incomplete input data.

PUT method is used for updating existing resources. When defining
a route for an update operation, it is conventional to include the unique
identifier of the resource in the URL. Imagine you want to update a user’s in-
formation; the route should look like ’/users/:id’, where ’:id’ is a placeholder
for the user’s identifier:

“‘typescript app.put(’/users/:id’, updateUser); “‘
In the ‘updateUser‘ handler, you would need to validate the incoming

data and update the resource accordingly. It is also important to return
appropriate HTTP status codes to indicate the result of the operation. For
instance, returning a 204 No Content status code can communicate that the
update was successful, whereas a 404 Not Found would indicate that the
specified resource does not exist.

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 144

DELETE method is employed to remove resources from the server. As
with the PUT method, the DELETE route should contain the unique
identifier of the resource as a part of the URL, such as ’/users/:id’:

“‘typescript app.delete(’/users/:id’, deleteUser); “‘
Upon receiving a DELETE request, the associated route handler, ‘dele-

teUser‘, should perform the necessary steps to remove the resource and
return an appropriate HTTP status code, such as a 204 No Content for
successful deletion or a 404 Not Found for the non - existent resource.

To succinctly demonstrate the power of defining API routes, imagine
a bustling digital marketplace where merchants can list their products,
and customers can discover new items. Using the well - established CRUD
operation design pattern, you’ve seamlessly created the means for sellers to
add, update, and remove their inventory and allowed shoppers to effortlessly
browse the selection.

In conclusion, when working with Deno and TypeScript to create a
RESTful API, the way we define our API routes for GET, POST, PUT, and
DELETE operations plays a significant role in the clarity, maintainability,
and overall structure of the application. By adhering to best practices and
conventions, we empower the entire development process, making it easier
to understand and navigate the codebase while minimizing the chances of
introducing bugs and vulnerabilities. The power of Deno and TypeScript,
combined with thoughtful route definitions, allows developers to build robust
and performant APIs that quench the thirst of countless digital denizens
craving interaction with your meticulously designed services.

Creating Controllers and Middleware for API Endpoints

Creating controllers and middleware for API endpoints is an essential part
of building a robust and maintainable web application in Deno. Controllers
encapsulate the business logic that gets executed on a particular API request,
while middleware allows us to add functionalities, such as authentication,
authorization, and input validation, to the request - response pipeline. To
create controllers and middleware, we first need to have a clear understanding
of the underlying architectural patterns and the core Deno libraries that
support these functionalities.

Implementing the Model - View - Controller (MVC) pattern in Deno

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 145

applications can help organize the codebase and promote separation of
concerns. In this pattern, a controller receives a client’s request, interacts
with the relevant model to perform the specified operation, and sends the
response back to the client, possibly using a view for rendering the data.
While implementing this pattern in Deno, we can take advantage of the
powerful features of TypeScript, such as interfaces and type guards, to
create type - safe and highly maintainable code.

A popular library for creating HTTP servers in Deno is Oak, which
provides a middleware framework similar to the Express.js library for Node.js.
To create controllers and middleware using Oak, we can follow these steps:

1. Import the necessary Oak modules and create a new instance of the
‘Application‘ class.

“‘javascript import { Application } from ’https://deno.land/x/oak/mod.ts’;
const app = new Application(); “‘
2. Define a controller function that contains the business logic for a

specific API route. The controller function should have a signature similar
to this:

“‘javascript async function myController(context: Record<string, any=””>)
{ // Business logic here } “‘

The ‘context‘ parameter represents the request - response context of
the API call, and it provides access to details such as the request object,
response object, and any URL parameters.

3. Define a middleware function for the application using Oak’s ‘use()‘
method. Middleware functions should have a signature similar to this:

“‘javascript async function myMiddleware(context: Record<string, any=””>,
next: CallableFunction) { // Pre - controller logic here

await next();
// Post - controller logic here } “‘
The ‘next()‘ function is used to call the next middleware or controller

function in the pipeline. Middleware functions get executed before and after
controllers, so they can add functionality like logging, input validation, or
authentication.

4. Create a router instance using Oak’s ‘Router‘ module and add routes
that map to the appropriate controller functions. For example, a simple
GET request to the ‘/api/data‘ endpoint can be mapped as follows:

“‘javascript import { Router } from ’https://deno.land/x/oak/mod.ts’;

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 146

const router = new Router();
router.get(’/api/data’, myController); “‘
5. Finally, attach the middleware functions and router to the application

instance using the ‘use()‘ method, and start the HTTP server.
“‘javascript app.use(myMiddleware); app.use(router.routes()); app.use(router.allowedMethods());
await app.listen({ port: 8000 }); “‘
By following these steps, we can create a simple yet powerful API in

Deno using controllers and middleware. This approach allows us to create
modular, testable, and maintainable code, leveraging TypeScript’s powerful
type system and Deno’s extensive runtime APIs.

As our application grows in complexity and additional functionality
is needed, we can continue to build on this foundation by adding more
middleware and controller functions. Furthermore, integrating other Deno
libraries and services can greatly enhance our API’s capabilities and perfor-
mance. For instance, adding authentication middleware with JWT tokens,
incorporating OAuth2 strategies for social login, or plugging in a database
connection with Deno’s native drivers.

In conclusion, Deno, combined with TypeScript and the Oak library,
enables an efficient and maintainable structure for creating controllers and
middleware for API endpoints. As we move forward, remember that the
key to a successful API is careful planning, adherence to best practices,
and leveraging Deno’s ecosystem and features to build adaptable, scalable,
and secure applications. Seeing how Deno is evolving rapidly, there are
always new techniques and libraries to explore, pushing the boundaries of
what’s possible with Deno and TypeScript in the world of modern web
development.</string,></string,>

Utilizing Deno Standard Libraries for Handling Requests
and Responses

Deno provides an HTTP module within its standard library to facilitate
creating HTTP servers and clients for handling requests and responses. The
‘serve‘ function, exported by the ’http’ module, gives you an HTTP server
that listens on a specified address and port. Consider the following example:

“‘typescript import { serve } from ”https://deno.land/std@0.114.0/http/server.ts”;
const server = serve({ port: 8000 });

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 147

console.log(”Listening on http://localhost:8000”);
for await (const request of server) { request.respond({ body: ”Hello,

world!” }); } “‘
The first line imports the ‘serve‘ function from the standard ’http’ module.

We then create an HTTP server that listens on port 8000. The output
informs us that the server is listening, and by using a for - await loop, the
code block dynamically responds to each incoming request with a ”Hello,
world!” message.

It is important to mention that out of the box, Deno provides you
with low - level HTTP server implementation, meaning you might find that
developing a feature - rich application can be verbose. Fortunately, there
are third - party libraries available in the Deno ecosystem, like Oak, which
makes it easier to work with these low- level APIs by providing an express.js
- like syntax.

Now that we can create a basic HTTP server, let’s dive into dealing
with requests and responses in a more detail. Continuing with the previous
example, we can extract more information from the request object:

“‘typescript for await (const request of server) { const { method, url,
headers } = request;

console.log(‘Method: ${method}, URL: ${url}, Headers: ${JSON.stringify([
headers.entries()])}‘);

request.respond({ body: ”Hello, world!” }); } “‘
In this example, we have destructured the ‘method‘, ‘url‘, and ‘headers‘

properties from the request object. We then log the extracted values, giving
us insights into the nature of incoming requests. This information can be
helpful for implementing conditional logic based on the request method,
query parameters, or route.

Let’s say we want to implement an API that can handle different routes
and methods. One possible solution is to use a switch statement with
concatenated method and url:

“‘typescript for await (const request of server) { const { method, url }
= request;

switch (‘${method}:${url}‘) { case ”GET:/”: request.respond({ body:
”Welcome to the homepage!” }); break; case ”GET:/api/data”: request.respond({
body: JSON.stringify({ data: ”Here’s some data.” }) }); break; case
”POST:/api/data”: request.respond({ body: ”Data received!” }); break;

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 148

default: request.respond({ status: 404, body: ”Route not found.” }); break;
} } “‘

By doing this, we create a simple routing structure that supports different
routes based on the method and URL of the incoming request. While this
approach is straightforward, using third - party routing libraries like Oak or
abc can provide more robust solutions.

When it comes to responses, Deno makes it easy to set different HTTP
status codes, headers, and content types. For instance, if we want to serve an
HTML file instead of plain text, we can read the file using Deno’s standard
fs module, adjust the response headers, and send that as our response:

“‘typescript import { serve } from ”https://deno.land/std@0.114.0/http/server.ts”;
import { readFile } from ”https://deno.land/std@0.114.0/fs/mod.ts”;

const server = serve({ port: 8000 });

console.log(”Listening on http://localhost:8000”);

const html = await readFile(”index.html”, { encoding: ”utf - 8” });

for await (const request of server) { const headers = new Headers();
headers.set(”Content - Type”, ”text/html; charset=UTF - 8”);

request.respond({ body: html, headers }); } “‘

In this example, we added an import for the ‘readFile‘ function from the
standard fs module. After reading the ”index.html” file, we create a new
‘Headers‘ object to customize our response headers, specifying ”Content -
Type” as ”text/html.” As a result, the server will serve the HTML file with
the correct headers.

These examples demonstrate the flexibility and simplicity of Deno’s
standard http module for handling requests and responses. Although third -
party tools often provide higher - level abstractions, understanding the ins
and outs of Deno’s native capabilities allows for better - informed decisions
when crafting your applications.

As we have seen, handling requests and responses in Deno is at the core
of building web applications. By using the available standard libraries, you
unlock the ability to create powerful server applications with ease. While
libraries like Oak may provide a higher - level abstraction akin to Express.js,
knowing the raw power of Deno’s capabilities is essential for mastering the
Deno runtime and developing robust software.

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 149

Integrating Query Parameters and Route Parameters in
API Endpoints

Let’s start with route parameters. Route parameters refer to values held
within URL segments which are used to identify specific resources and can
be accessed by the Deno application. For instance, consider a RESTful
API for managing books. A typical URL in this API might look like:
‘/books/:bookId‘. In this URL, ‘:bookId‘ serves as a route parameter that
dynamically accepts a unique ID for each book. In the Deno application,
we can access this route parameter as shown below:

“‘typescript import { Router } from ”https://deno.land/x/oak/mod.ts”;
const router = new Router();
router.get(”/books/:bookId”, (context) => { const bookId: string =

context.params.bookId; // Retrieve and return the book with the specified
bookId }); “‘

With this configuration, the ‘bookId‘ parameter is available in the
request context and can be used to perform actions, such as retrieving the
corresponding book details and returning them to the client.

Now let’s move on to query parameters. Query parameters serve to filter
or otherwise manipulate the data being requested through the API without
changing the resource URL itself. They are appended to the URL after a
question mark (‘¿) and are formatted as key - value pairs separated by an
ampersand (‘&‘). An example of this can be seen in a URL such as
‘/books?author=JohnDoe‘. Here, ‘author‘ is a query parameter with the
value ’John Doe’, which can be used by the API to return books written by
John Doe.

In the Deno application, we can access query parameters using the
‘context.request.url.searchParams‘ object as shown below:

“‘typescript router.get(”/books”, (context) => { const { request } =
context; const author: string null = request.url.searchParams.get(”author”);

if (author) { // Retrieve and return all books by the specified author }
else { // Retrieve and return all books } }); “‘

In this example, we first check if the ‘author‘ query parameter is received
in the API request. If the parameter is present, we retrieve and return
books based on the specified author; otherwise, we fetch all books.

We can implement this in our Deno application as follows:

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 150

“‘typescript const { request, params } = context; const bookId: string =
params.bookId; const titleFilter: string null = request.url.searchParams.get(”title contains”);

if (titleFilter) { } else { } }); “‘
This provides a versatile way to fetch data based on the presence or

absence of query parameters, allowing users to tailor their API requests to
obtain precisely the data they need.

As we conclude our exploration into integrating query parameters and
route parameters within API endpoints, it’s crucial to recognize the power
and versatility they provide when designing a RESTful API using Deno
and TypeScript. From enabling us to tailor responses based on the client’s
requirements, to promoting thoughtful, standardized API structures, using
query and route parameters ensures that our application maintains an
adaptable and efficient foundation.

As we move forward, we will encounter more advanced and exciting
aspects of Deno applications, such as authentication, authorization, testing,
and deployment. With the foundation of a solid and thoughtful API design,
we will be ready to tackle each of these challenges head - on, delivering
powerful, scalable, and secure APIs to our clients.

Validating API Requests with TypeScript Type Guards
and Interfaces

Let’s consider a simple example of a REST API for managing a collection
of books. A typical ‘POST‘ request to create a new book might contain the
following data:

“‘json { ”title”: ”The Catcher in the Rye”, ”author”: ”J.D. Salinger”,
”publish date”: ”1951 - 07 - 16” } “‘

To validate this request using TypeScript, we can start by defining an
interface representing the structure of the expected data:

“‘typescript interface Book { title: string; author: string; publish date:
string; } “‘

With the ‘Book‘ interface defined, we can utilize TypeScript’s powerful
type system to create a utility function that ensures the incoming request
data conforms to the expected structure. To achieve this, we can leverage
Conditional Types and User - Defined Type Guards.

TypeScript’s User - Defined Type Guards allow you to create custom

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 151

functions that can confirm if a given value matches a specific type. These
functions generally follow the pattern ‘value is Type‘, allowing the TypeScript
compiler to narrow down the type of a variable within a specific block of
code.

Let’s create a custom Type Guard for validating a ‘Book‘ object:
“‘typescript function isBook(obj: any): obj is Book { return (typeof

obj.title === ”string” && typeof obj.author === ”string” &&
typeof obj.publish date === ”string”); } “‘

With the ‘isBook‘ Type Guard function in place, we can effectively
check if the request data matches the expected ‘Book‘ structure in our API
endpoint:

“‘typescript const requestHandler = async (request: ServerRequest,):
Promise<response> => { const { title, author, publish date } = await
request.json();

const inputData = { title, author, publish date };
if (!isBook(inputData)) { return { status: 400, message: ’Invalid request

data’, }; }
// Continue processing the request with the validated data }; “‘
By validating the API request using the ‘isBook‘ Type Guard, we ensure

the request data adheres to the ‘Book‘ interface structure. If the data
does not match, the API can return a ‘400 Bad Request‘ status message
indicating the issue. Subsequent processing steps in the request handler are
now guaranteed to work with properly structured data, reducing the risk of
runtime errors and enhancing the overall robustness of the API endpoint.

As an additional enhancement, we can further improve the validation
process by separating request data validation into utility functions based on
the desired validation rules:

“‘typescript function isStringProperty(obj: any, propName: string):
boolean { return typeof obj[propName] === ’string’; }

function isBook(input: any): input is Book { return (isStringProp-
erty(input, ’title’) && isStringProperty(input, ’author’) &&
isStringProperty(input, ’publish date’)); } “‘

This approach promotes code reuse and allows for the easy addition or
modification of validation rules for various request properties.

In conclusion, using TypeScript interfaces and User - Defined Type
Guards in Deno applications offers a powerful and flexible way to validate

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 152

API requests, reducing the possibility of runtime errors, and ensuring
the data conforms to the expected structure. By utilizing Deno’s native
TypeScript support, developers can create more resilient APIs that are
easier to maintain and understand, streamlining the development process
and promoting best practices. As we move forward in our exploration of
Deno and TypeScript, we will see how these techniques can be used in
tandem with other features and libraries, culminating in the creation of a
complete, real - world Deno application.</response>

Implementing Error Handling and HTTP Status Codes

To begin with, let’s consider an ordinary Deno REST API structure. Gen-
erally, a Deno API consists of controllers that carry out specific tasks, and
each function in the controller might perform an operation like fetching
data from the database or validating user input. Errors can occur during
these tasks, and it is our responsibility to catch the errors and respond with
suitable HTTP status codes and messages. The Deno runtime and various
third - party libraries might throw exceptions or return errors as values,
which, if not handled, can result in the termination of the application.

You might already be familiar with the standard JavaScript ‘try‘ and
‘catch‘ blocks that allow you to handle exceptions. However, it is important
to go beyond the basic usage of error handling and tailor it to suit the Deno
ecosystem. Instead of wrapping individual functions in ‘try‘ and ‘catch‘
blocks, it is more efficient to create custom error classes that inherit from
the built - in ‘Error‘ class. Custom error classes will help to follow the DRY
(Do Not Repeat Yourself) principle, minimize duplicated code, and make it
easier to add new error types in the future.

Let’s consider an example of implementing error handling in a simple
Deno application. Assume we have an API that deals with user management,
and there is a need to throw custom errors when the user is not found or
there is an issue with the input data. We can create custom error classes
like this:

“‘js class UserNotFoundError extends Error { constructor(message =
”User not found”) { super(message); this.name = ”UserNotFoundError”; }
}

class ValidationError extends Error { constructor(message = ”Invalid

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 153

input data”) { super(message); this.name = ”ValidationError”; } } “‘
With these custom error classes, we can now throw meaningful errors in

our application. For instance, consider a controller that retrieves user data
by ID:

“‘js async function getUserById(id) { const user = await db.getUser(id);
if (!user) { throw new UserNotFoundError(); } return user; } “‘

Now, the function throws a ‘UserNotFoundError‘ when the user is not
found in the database. However, we still need to catch this error and respond
with the appropriate HTTP status code and message. A flexible approach
is to create a custom error handling middleware that handles different types
of errors. Below is an example:

“‘js async function errorHandlingMiddleware(ctx, next) { try { await
next(); } catch (error) { if (error instanceof UserNotFoundError) { ctx.response.status
= 404; } else if (error instanceof ValidationError) { ctx.response.status =
400; } else { ctx.response.status = 500; } ctx.response.body = { message:
error.message }; } } “‘

By implementing a custom error handling middleware, we centralize the
responsibility for handling exceptions and sending the appropriate HTTP
status codes in our Deno application. Furthermore, it becomes easier to
handle new error types and maintain existing ones, as the error logic is
encapsulated in a single place.

In our error handling middleware, we have covered 404, 400, and 500
status codes, which represent ”Not Found,” ”Bad Request,” and ”Internal
Server Error” scenarios. However, there are numerous other HTTP status
codes that you might want to use in different situations. For example, a
401 ”Unauthorized” status is suitable when handling authentication - related
issues. By understanding and thoughtfully utilizing these HTTP status
codes, you can design a Deno application that excels at communicating its
state to the client.

Authentication and Authorization in REST API using
Deno and TypeScript

First, let’s examine the primary differences between Authentication and
Authorization. Authentication verifies user identity, usually through login
credentials such as a username and password. On the other hand, Autho-

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 154

rization focuses on determining whether a user has the required permissions
to access a specific resource or perform certain actions. It is crucial to
understand the distinction between these two concepts when designing a
secure REST API.

JWT provides a stateless way to authenticate users, encapsulating claims
or payload data within a token. After verifying their credentials, the server
returns the token to the client. The client then sends this token with
each request to access protected resources, allowing the server to verify the
token’s authenticity and determine user identity without the need for session
management.

To facilitate handling JWT tokens in our Deno application, we can use
the popular library ”djwt.” This library provides a simple and secure way
to work with JWT tokens, enabling token creation, signing, and validation.

When working with JWT, it is essential to use a robust algorithm like
HMAC (Hash - based Message Authentication Code) with a secret key.
Combining a secure hashing algorithm with a secret key guards against
potential attacks such as brute - forcing the key and forging tokens.

With the authentication mechanism in place, we can now focus on
implementing authorization. One popular method is Role - Based Access
Control (RBAC), where users are assigned roles with specific permissions.
The system checks whether a user’s role has the required permissions before
granting access to protected resources.

In a Deno REST API, we can create middleware functions for autho-
rization, which intercept incoming requests and check whether the user has
the necessary permissions to access the requested resources. By employing
TypeScript, we can define custom types and interfaces to create a strongly
- typed foundation for our authorization logic. Moreover, we can leverage
TypeScript’s advanced typing capabilities to safeguard against potential
programming errors and improve the overall quality of our codebase.

For instance, consider the following:
“‘typescript interface User { id: number; username: string; role: Role; }
interface Role { id: number; name: string; permissions: Permission[]; }
interface Permission { id: number; name: string; }
function hasPermission(user: User, requiredPermission: string): boolean

{ return user.role.permissions.some(permission => permission.name
=== requiredPermission); } “‘

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 155

Using the ‘hasPermission‘ function, we can ensure that only users with
the required permissions can access protected resources or perform restricted
actions.

By combining the power of Deno and TypeScript in building a REST
API, developers can reap the benefits of a flexible, secure, and maintainable
authentication and authorization system. Following these steps and best
practices will result in a robust and future - proof API that stands up to
modern security standards and requirements.

Enabling Cross - Origin Resource Sharing (CORS) in
Deno REST API

Cross - Origin Resource Sharing (CORS) is a fundamental security feature
implemented in web browsers to prevent unauthorized access to resources
from different origins. By default, web browsers block AJAX requests
to resources hosted on different origins, enforcing the same - origin policy.
CORS enables you to relax this restriction for specific origins, allowing
your web applications to access your REST APIs even if they are hosted on
different origins.

To get started, let’s create a simple Deno REST API that returns a list
of items. We’ll use the popular Oak middleware framework to define our
API routes:

“‘typescript // app.ts import { Application, Router } from ”https://deno.land/x/oak/mod.ts”;
const items = [{ id: 1, name: ”Item 1” }, { id: 2, name: ”Item 2” },];
const router = new Router(); router.get(”/items”, (ctx) => { ctx.response.body

= items; });
const app = new Application(); app.use(router.routes()); app.use(router.allowedMethods());
await app.listen({ port: 8000 }); “‘
Now, let’s say you have a frontend application hosted on ‘http://localhost:8080‘.

This application needs to fetch the items from the API. Without CORS
enabled, any request from this origin will be blocked by the browser due to
the same - origin policy.

To enable CORS in our Deno REST API, we’ll use the ‘oak cors‘ middle-
ware, built for the Oak framework. First, we’ll need to import the ‘oak cors‘
middleware:

“‘typescript import { oakCors } from ”https://deno.land/x/cors/mod.ts”;

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 156

“‘
Next, add the middleware to your Oak application, making sure it is

placed before any route middleware:
“‘typescript app.use(oakCors()); app.use(router.routes()); app.use(router.allowedMethods());

“‘
The ‘oakCors()‘ middleware allows all origins by default, which is not

recommended for a production environment. Instead, you should specify
the allowed origins explicitly:

“‘typescript app.use(oakCors({ origin: ”http://localhost:8080”, }),); “‘
Additionally, you might want to customize CORS settings even further.

For example, you can restrict which HTTP methods and headers are allowed,
and define how long the preflight request results can be cached:

“‘typescript app.use(oakCors({ origin: ”http://localhost:8080”, meth-
ods: ”GET,POST,PUT,DELETE”, allowedHeaders: ”Content-Type,Authorization”,
maxAge: 86400, // Cache preflight request results for 24 hours }),); “‘

With these changes, your frontend application can now safely request
the list of items from the Deno REST API. The browser will no longer
block these requests, ensuring seamless communication between the two
components.

A crucial thing to be aware of is that adding CORS headers does not
inherently make your application more secure. The same - origin policy is a
security measure applied by browsers to prevent unauthorized access; CORS
headers should be used with caution and only allowed where necessary.

When CORS is enabled on a public - facing API, there’s a chance that
unauthorized clients could access your API. It’s crucial to implement proper
authentication and authorization to ensure only valid clients can interact
with your API. Keep in mind that CORS is a client - side mechanism and
can be circumvented by non - browser clients; it should not serve as your
API’s primary security measure.

In conclusion, CORS plays a vital role in enabling seamless interaction
between your Deno REST API and web applications hosted on different
origins. By leveraging powerful middleware solutions such as Oak and
oak cors, developers can easily and securely expose their API to trusted
clients. Nevertheless, CORS should be used with caution and coupled with
proper authentication and authorization mechanisms to maintain the overall
security of your application.

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 157

As we move forward, we’ll explore additional aspects of Securing Deno
APIs, diving deeper into authentication, authorization, and other security
best practices to ensure your Deno - powered APIs remain resilient in the
face of evolving threats.

Testing REST API Endpoints: Tools and Best Practices

To start, let’s examine the importance of multi - layered testing. Testing
must be done across multiple layers, including unit, integration, and system
(or end-to-end) tests. While unit and integration tests focus on ensuring the
correctness of individual components and their interaction, system-level tests
aim to validate the functionality of the entire API, making comprehensive
requests to API endpoints and analyzing responses.

One way to define and execute tests for REST API endpoints is using the
built - in Deno testing framework. Deno’s test framework is based on Test
Driven Development (TDD), which means that tests are written before the
implementation. The framework offers basic assertions, allowing developers
to write simple test cases. However, more advanced testing scenarios might
require third - party tools and libraries to provide enhanced assertions,
request simulation, response validation, and other critical capabilities.

One invaluable tool to include in your testing arsenal is Postman. Post-
man allows developers to easily create, save, and execute API requests,
ensuring consistency in testing environments. Furthermore, Postman offers
a GUI to compose API calls, construct request headers and body, and visu-
alize responses, making it easier to find discrepancies between expected and
actual behavior. Additionally, Postman supports the creation of collections -
grouped requests for various test scenarios - making the testing process more
organized and maintainable.

When it comes to actually writing the tests, TypeScript can greatly
enhance the experience by providing type safety, autocompletion, and more
precise code navigation. By utilizing TypeScript’s interfaces, type aliases,
and type guards, you can clearly define the structure of expected API
request payloads and responses. Type -driven development can lead to fewer
runtime errors and an improved developer experience, enabling the creation
of more robust and resilient tests for your API endpoints.

In REST API testing, it is crucial to verify that response codes, headers,

CHAPTER 8. CREATING A REST API WITH DENO AND TYPESCRIPT 158

and payloads conform to the expected API contract, particularly focusing
on edge cases and potential misuse. Verifying response codes (2xx for
successful requests, 4xx for errors due to client input, and 5xx for server
errors) and validating response body content types (typically JSON) are
fundamental principles of thorough endpoint testing. Additionally, testing
various inputs that push the boundaries of the API’s expected behavior
ensures the robustness and reliability of the endpoint.

Moreover, security plays a vital role in REST API testing. This encom-
passes verifying the endpoint’s authentication and authorization mechanisms,
ensuring proper handling of sensitive data, and protecting against common
security vulnerabilities (such as SQL injection and cross - site scripting
attacks).

Another key consideration is the need for reliable stubs and mocks to
simulate external dependencies and isolate the API under test. This could
involve using tools like Nock to intercept and modify HTTP requests, or
libraries like Sinon to create sophisticated stubs and mocks of external
services and modules.

Finally, the process of testing should not be a one - time event but rather
an ongoing practice integrated into the development pipeline. Continuous
Integration (CI) and Continuous Deployment (CD) practices should be
implemented to automatically run tests whenever changes are made to the
API codebase. This ensures that any newly introduced issues are detected
and addressed promptly, resulting in higher code quality and reducing the
potential of shipping broken functionalities or regressions.

In conclusion, testing REST API endpoints, particularly in a Deno and
TypeScript context, is an essential aspect of creating resilient, reliable, and
secure applications. By employing multi - layered testing approaches, lever-
aging essential tools, integrating security best practices, and continuously
refining the testing process, developers can ensure their Deno - based APIs
stand the test of time and deliver consistent, high - quality experiences for
clients and end users alike. As we move on to explore GraphQL APIs with
Deno and TypeScript, let these testing lessons be the foundation upon which
we build our knowledge and practice for achieving excellence in developing
modern, future - proof APIs.

Chapter 9

Building GraphQL APIs
using Deno and
TypeScript

To commence our GraphQL API development, we first need to install
and configure the required Deno libraries. While Deno’s standard library
contains numerous useful utilities, it does not come with a built- in GraphQL
library. Nevertheless, there are third - party modules available to fulfill this
requirement. For our GraphQL server, we will leverage the ‘oak graphql‘
module, which is a wrapper around the popular ‘graphql‘ package. It
integrates seamlessly with Oak, a middleware framework inspired by Koa
and tailored for Deno. With these libraries in place, we can proceed to
writing our GraphQL schema.

A GraphQL schema is a critical component of a GraphQL API. It
defines the precise structure of the data we want to expose and serves as a
”contract” between the client and the server. The schema is composed of
type definitions and resolvers to define the shape of the data and how the
server will respond to requests against this shape. By leveraging TypeScript,
we can establish a strong, type - safe association between our schema and
the underlying data without relying on third - party type generators. This
association allows us to avoid common pitfalls such as undefined properties
or mismatched types, turning the GraphQL development process into a
pleasant and productive experience.

Once our schema is ready, we can start to elucidate queries and mutations

159

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 160

- the two primary building blocks of any GraphQL API. Queries refer to
the operations performed to fetch data, while mutations deal with creating,
updating, or deleting the data. Using Deno and TypeScript, implementing
these operations becomes a structured and organized process thanks to the
strong typing system that TypeScript provides.

As GraphQL APIs evolve, their schema typically expands to cater to
more complex and demanding requirements. Implementing pagination,
filtering, and sorting are essential techniques to deliver a curated slice of
data to the client. With a robust foundation in place, our Deno - based
GraphQL API can gracefully accommodate these requirements, standing
resilient even under heavy developmental flux.

Another significant aspect of building GraphQL APIs is securing them.
Since GraphQL unifies data access through a single API endpoint, it becomes
increasingly important to protect it against unauthorized access or excessive
resource consumption. We can leverage Deno’s in - built security features,
such as granular permissions and the secure runtime environment, in tandem
with GraphQL’s authorization patterns to build a robust layer of protection
for our API.

To push the boundaries of our GraphQL API and promote near -
instantaneous data exchange, we may utilize subscriptions. GraphQL sub-
scriptions are a real - time mechanism for delivering updates to clients via
WebSocket connections. Given Deno’s efficient handling of WebSockets,
pairing the runtime with GraphQL subscriptions empowers us to develop
performant and interactive solutions.

With our GraphQL API rapidly taking shape, it’s crucial to address
concerns such as error handling and validation. Dealing with errors and
ensuring data consistency is an integral part of any API development process.
As we work with Deno and TypeScript, we have the powerful type system,
Deno’s built - in error handling capabilities, and third - party libraries at our
disposal to manage errors and validation in a sophisticated and pragmatic
manner.

Stress - testing, debugging, and optimizing our Deno - powered GraphQL
API are the final steps in our development journey. With the provided
insights and well - crafted examples, we are now armed with the knowledge
required to build efficient, secure, and scalable APIs that withstand the
ever - evolving demands of the modern web. By combining the power of

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 161

Deno, TypeScript, and GraphQL in a synergistic triad, we have not merely
assembled disparate tools but have woven a complete tapestry of progressive
web development practices. And as we move forward in this landscape, this
triumvirate stands as a beacon, guiding us into the exciting realm that lies
at the cutting edge of modern software engineering.

Introduction to GraphQL and Deno: Advantages and
Use Cases

To start, let’s briefly examine the key features of both technologies. Deno,
created by the same person who created Node.js, offers several improvements
over its predecessor, such as enhanced security, built - in utilities, and native
TypeScript support. TypeScript, being a superset of JavaScript, adds static
types and other powerful features to the language, making it well - suited
for scalable and maintainable projects. Meanwhile, GraphQL is a query
language for APIs, allowing clients to request exactly what they need, and
nothing more, from the server. This flexibility can help reduce the amount
of data transferred over the network and minimize the need for a myriad of
distinct endpoints, leading to more efficient and maintainable APIs.

Combining these two revolutionary technologies can yield a wealth of
benefits for developers building API - driven applications. For instance, the
strong typing offered by TypeScript and Deno can help eliminate common
bugs, while GraphQL’s introspection and type system ensure that client
queries are valid and predictable. Additionally, Deno’s built - in module
system enables seamless integration of third - party libraries into the API,
further enhancing the developer experience.

Let’s explore some exciting use cases that showcase the advantages of
using GraphQL with Deno:

1. Building performant, scalable, and maintainable APIs: With Deno’s
native support for TypeScript, you can leverage the static typing and other
language features to create a robust foundation for your API’s schema,
types, resolvers, and middleware. Coupled with GraphQL’s flexibility, you
can build APIs that are easy to understand, maintain, and evolve over time.
Your clients can query exactly the data they need with tailored queries,
reducing over - fetching and under - fetching concerns.

2. Rapid API prototyping and iteration: The combination of Deno’s

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 162

module system and GraphQL’s introspection and schema definition features
promote fast prototyping and iteration of your API. Deno encourages a lean
approach to dependencies, while GraphQL’s flexible query structure allows
clients to adapt their queries as the API evolves without requiring changes
on the server side. This enables the rapid development of both server and
client side features while maintaining a stable API.

3. Real - time data streaming applications: The Deno runtime provides
native support for WebSockets, making it easier to create real - time data
streaming applications. With the addition of GraphQL subscriptions, you
can craft fully - featured APIs that expose real - time event - driven data
alongside traditional query and mutation operations. The result is a unified
and expressive API that can be efficiently consumed by a wide range of
clients.

4. Microservice architectures: In a microservice architecture, it becomes
increasingly crucial to provide a consolidated API gateway to manage the
routing and interaction between disparate services. GraphQL, with its
inherent flexibility and strong typing, is an ideal technology for crafting this
unified API layer. By combining it with Deno, the gateway benefits from
the efficient runtime, enhanced security, and native TypeScript support,
resulting in a solid foundation for a stable, performant, and maintainable
microservice infrastructure.

To conclude, it’s apparent that the union of Deno and GraphQL offers a
compelling technological partnership, ideal for building modern, scalable,
and efficient APIs. Developers can reap significant rewards by employing
these powerful tools in concert to craft API - driven applications that meet
the demands of a rapidly changing and ever - evolving web landscape. As we
delve deeper into the intricacies and subtleties of this convergence, we shall
reveal the full extent of the potential synergies between Deno and GraphQL,
equipping you with the knowledge and inspiration necessary to craft APIs
that elevate your projects to a new dimension of elegance, performance, and
flexibility.

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 163

Installing and Configuring Required Deno Libraries for
GraphQL

A quick overview of these libraries: 1. Oak: A powerful middleware frame-
work and HTTP server for Deno, inspired by Koa. 2. graphql: The
JavaScript reference implementation of GraphQL. 3. gql tag: A Deno -
compatible alternative to the popular GraphQL ”gql” template literal tag,
used for parsing GraphQL queries. 4. deno graphql: A wrapper library for
easily running GraphQL with Deno.

To get started, let’s create a new Deno project by running the following
command in your terminal or command prompt:

“‘sh $ mkdir deno - graphql && cd deno - graphql “‘
Next, we’ll create a ‘deps.ts‘ file to manage our project dependencies.
“‘sh $ touch deps.ts “‘
Installing Oak
Oak is a middleware framework that simplifies the process of creating and

configuring a Deno application. It offers a clean and straightforward API,
allowing developers to organize their application logic through middleware
functions.

To install Oak, open the ‘deps.ts‘ file, and add the following line:
“‘ts export { Application } from ’https://deno.land/x/oak/mod.ts’; “‘
Using the ”graphql” Library
Now that we have our HTTP server set up, we’ll need the GraphQL

reference implementation to actually parse and resolve GraphQL queries.
Fortunately, there’s already an official package from the creators of GraphQL
that we can use, called ‘graphql‘.

Let’s add the ‘graphql‘ library to our ‘deps.ts‘ file:
“‘ts export { graphql, buildSchema, } from ’https://cdn.skypack.dev/graphql@15.5.0/graphql.mjs’;

“‘
With this, we can build our GraphQL schema and execute queries against

it using the ‘graphql‘ function.
Installing gql tag
A critical aspect of utilizing GraphQL in a practical and maintainable

manner is having a consistent way of handling and validating your queries.
The popular JavaScript library ‘graphql - tag‘ has long been the preferred
library for parsing GraphQL queries and validating them against a schema.

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 164

However, ‘graphql - tag‘ is incompatible with Deno due to its reliance on
Node.js - specific APIs.

In response to this gap, an alternative named ‘gql tag‘ has emerged,
which is compatible with Deno.

In our ‘deps.ts‘ file, let’s add the following line to import ‘gql‘ from
‘gql tag‘:

“‘ts export { gql } from ’https://deno.land/x/gql tag/mod.ts’; “‘
This will provide us with the ‘gql‘ tagged template literal that we can

utilize to parse our GraphQL queries and validations.
deno graphql
As of now, we have all the necessary dependencies for running a simple,

yet powerful GraphQL server with Deno. However, there’s a library that
can significantly enhance the developer experience: ‘deno graphql‘. With
the help of ‘deno graphql‘, we can abstract handling of HTTP requests
and responses, simplifying our code and accelerating the implementation
process.

To use ‘deno graphql‘, add the following line to your ‘deps.ts‘ file:
“‘ts export { gqlHttp } from ’https://deno.land/x/graphql/mod.ts’; “‘
Congratulations! You now have all the necessary libraries installed and

configured for building a GraphQL server with Deno.
In conclusion, with the right tools and packages in place, the journey

of creating a GraphQL API using Deno becomes a breeze. Leveraging the
efficiency of Oak, the reliability of the official ‘graphql‘ package, the conve-
nience of ‘gql tag‘, and the sweet abstraction provided by ‘deno graphql‘,
developers can swiftly cater to their API needs in a secure and scalable
manner.

Creating a GraphQL Schema with TypeScript: Type
Definitions and Resolvers

To truly grasp the power of combining GraphQL and TypeScript, developers
must first scrutinize the basic building blocks of a GraphQL schema: the
types. GraphQL in itself is a strongly - typed query language, which makes it
a perfect match for TypeScript. GraphQL types are entities that represent
the shape of the data that can be fetched by the API. While GraphQL has
a built - in set of scalar types like ”String,” ”Int,” ”Float,” ”Boolean,” and

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 165

”ID,” developers are encouraged to define their custom scalar types as well
as object types.

Using TypeScript to define GraphQL types grants developers autocom-
pletion and type checking benefits. Suppose we are creating an API for
a blogging platform. We can leverage TypeScript interfaces to define the
types for our schema. Let’s say we have a ”User” and a ”Post” type:

“‘typescript interface User { id: string; name: string; email: string;
posts: Post[]; }

interface Post { id: string; title: string; content: string; author: User; }
“‘

Now that we have our TypeScript interfaces in place, it is time to turn
our attention to GraphQL. We can use gql, a popular template tag provided
by the ”graphql - tag” package, to craft our schema with type definitions
that correspond to our TypeScript interfaces:

“‘typescript import { gql } from ”graphql - tag”;
const typeDefs = gql‘ type User { id: ID! name: String! email: String!

posts: [Post!]! }
type Post { id: ID! title: String! content: String! author: User! } ‘; “‘
As we proceed, you will see that the synergy between GraphQL and

TypeScript allows us to create an API that is much easier to maintain and
reason about. Exclamations (such as ”ID!”) indicate that the field is non -
null and should always return a value.

With the type definitions in place, it’s time to implement the resolvers.
Resolvers are functions that are responsible for fetching and assembling
the data that conforms to the shape of the types defined in our schema.
Moreover, the signature of these resolvers can be explicitly typed with
TypeScript, further cementing the connection between the two languages.

“‘typescript // We can create custom TypeScript types for resolver
functions type UserResolver = (parent: any, args: { id: string }) =>
Promise<user>; type PostsResolver = () => Promise<post[]>;

const resolvers = { Query: { user: <userresolver>async (, { id })
=> { // Fetch the data from the database or a remote API return
fetchUserData(id); }, posts: <postsresolver>async () => { // Fetch the
data from the database or a remote API return fetchAllPosts(); }, }, }; “‘

One key advantage of using TypeScript for resolvers is that it makes it
easy to catch errors early in the development process, primarily due to its

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 166

strong typing and type inference capabilities. For example, if we mistakenly
fetch ”email” instead of ”name” in the ”UserResolver”, TypeScript would
warn us that ”name” is missing in the return type of the function.

By meticulously crafting our GraphQL schema with TypeScript, we
unleash a potent combination that opens the door to greater developer
productivity, better maintainability, and robust error checking. This exem-
plary partnership between GraphQL and TypeScript enables us to reap the
benefits of both technologies while maintaining the flexibility and scalability
of modern APIs.

As we voyage further into the realms of Deno and TypeScript applica-
tions, you will discover a vast range of possibilities in applying TypeScript’s
advanced features such as unions and conditional types to enhance your
GraphQL schemas. Moreover, we will explore how Deno applications can in-
tegrate with popular GraphQL features like subscriptions, mutations, and au-
thentication to create a truly exceptional API experience. But for now, know
that your tryst with TypeScript and GraphQL aptly prepares you for the
challenges and excitement ahead.</postsresolver></userresolver></post[]></user>

GraphQL Query Basics: Fetching Data from Deno API

GraphQL has been gaining popularity as an alternative to traditional REST-
ful APIs for its flexibility and efficient operation. Deno, as a modern runtime,
can utilize GraphQL to provide a more powerful way to communicate be-
tween the client and server, using the robust features of TypeScript.

First, let’s describe the schema for blog posts and authors:
“‘graphql type Author { id: ID! name: String! posts: [Post]! }
type Post { id: ID! title: String! content: String! author: Author! } “‘
With this schema, we define two types: ‘Author‘ and ‘Post‘. Authors

have unique IDs, names, and an array of their blog posts. Blog posts also
have IDs, a title, and content, as well as a reference to their author.

Now, we’ll write a GraphQL query to fetch all blog posts, including the
author’s name:

“‘graphql query { posts { id title author { name } } } “‘
In this query, we’re asking for all posts and their respective ID, title,

and author names. Notice that we’ve omitted the blog post content and the
author’s ID. This is the power of GraphQL: we can ask for exactly what we

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 167

need, reducing unnecessary data transfer.
Next, let’s say we want to fetch a single post based on its unique ID:
“‘graphql query($id: ID!) { post(id: $id) { id title content author { id

name } } } “‘
In this example, we’re using a variable (‘$id‘) to represent the post ID.

We’re fetching the full post details, including the content and the author’s ID
and name. GraphQL variables enable us to reuse the same query structure
for multiple requests, parameterizing the input values.

When sending this query to our Deno API, we’ll need to include the
variable values. Here’s an example using JavaScript’s ‘fetch‘ API:

“‘javascript const query = ‘ query($id: ID!) { post(id: $id) { id title
content author { id name } } } ‘;

fetch(’/graphql’, { method: ’POST’, headers: { ’Content - Type’: ’appli-
cation/json’ }, body: JSON.stringify({ query, variables: { id: ’42’, }, }), })
.then((res) => res.json()) .then((data) => console.log(data)); “‘

When the query executes, the Deno API will fetch the specified post
and resolve the query, returning only the requested data - in this case, the
blog post and its author. In a similar manner, we can create custom queries
to request any combination of related data, while still benefiting from the
strong typing of TypeScript.

In conclusion, the combination of Deno, TypeScript, and GraphQL
creates an environment where we can build highly efficient, finely tuned,
and developer - friendly APIs. As we continue to explore these technologies
together, we will see how their harmonious synergy drives modern web
development to new heights.

GraphQL Mutation Basics: Creating, Updating, and
Deleting Data

There’s a certain anticipation and excitement when it comes to working
with GraphQL, and it’s easy to understand why. The power and flexibility it
offers in interacting with APIs are incomparable to its REST counterparts.
With GraphQL’s expressive querying language and the close connection to
TypeScript and Deno, it opens a whole new world in which developers can
communicate with their data sources.

As a starting point, let’s consider a simple example: a blog application

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 168

with posts and comments. In our GraphQL schema, we might define types
for ‘Post‘ and ‘Comment‘, each containing different fields, such as ‘id‘, ‘title‘,
‘body‘, and ‘author‘. Now let’s explore how to create, update, and delete
data for these types using mutations.

Creating Data: A Story of Creation
The simplest mutation is creating a new resource. Let’s create a new post

in our blog application. In the GraphQL schema, we define the mutation
like this:

“‘graphql type Mutation { createPost(input: PostInput): Post }
input PostInput { title: String! body: String! author: String! } “‘
Notice that we use an ‘input‘ type for the ‘createPost‘ mutation. Input

types are a convenient way to bundle multiple field arguments into a single
object, resulting in a cleaner mutation declaration.

In a Deno implementation, your mutation resolver function might look
like this:

“‘typescript const Mutation = { createPost: (parent: any, { input
}: { input: PostInput }, context: any) => { const newPost = { id:
generateId(), title: input.title, body: input.body, author: input.author, };

// Save the new post to your data store. // (implementation details
may vary) savePostToDatabase(newPost);

return newPost; }, }; “‘
In the TypeScript mutation function for ‘createPost‘, we make use of

the ‘PostInput‘ type to define the shape of the input data, ensuring that it
matches the structure we expect.

Updating Data: Change We Can Believe In
In some cases, we need to update an existing resource. Staying within

our blog example, let’s say we want to update the ‘body‘ of a post. We can
define our mutation accordingly:

“‘graphql type Mutation { updatePost(id: ID!, body: String!): Post } “‘
Our mutation resolver function might look like the following TypeScript

code:
“‘typescript const Mutation = { updatePost: (parent: any, { id, body

}: { id: string; body: string }, context: any) => { const existingPost =
findPostById(id);

if (!existingPost) { throw new Error(”Post not found”); }
const updatedPost = { existingPost, body };

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 169

// Update the post in your data store. // (implementation details may
vary) updatePostInDatabase(updatedPost);

return updatedPost; }, }; “‘
By leveraging TypeScript features like object destructuring, we can make

sure that our update operation is concise and easy to understand.
Deleting Data: The Final Act
Lastly, let’s examine the mutation for deleting a post:
“‘graphql type Mutation { deletePost(id: ID!): Post } “‘
Our TypeScript deletion resolver function could be:
“‘typescript const Mutation = { deletePost: (parent: any, { id }: { id:

string }, context: any) => { const existingPost = findPostById(id);
if (!existingPost) { throw new Error(”Post not found”); }
// Delete the post from your data store. // (implementation details may

vary) deletePostFromDatabase(id);
return existingPost; }, }; “‘
This resolver function locates the post, removes it from the data store,

and returns the deleted post as a result.
The synergy between GraphQL mutations, Deno, and TypeScript ex-

tends the idea of ”type - driven development” which makes their union a
natural choice for building applications. Not only does it provide clear
communication for developers concerning the operations and data structures
involved, but also packages it all in an elegant manner.

As we conclude this discussion on mutations, the journey through the
lens of GraphQL does not end here. The narrative continues as the reader
delves into the depths of advanced GraphQL features, testing best practices
and more, enriching their understanding of the vibrant landscape it inhabits
within Deno and TypeScript. And thus, we remain at the edge of our seat,
ever eager to explore and harness the powerful capabilities that await in
this brave new world of technology.

Implementing Pagination, Filtering, and Sorting in GraphQL
API

One of the most common challenges faced by API developers when dealing
with a large amount of data is efficiently fetching chunks of data (pagination),
as well as allowing users to filter and sort the retrieved data as per their

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 170

requirements. GraphQL serves as an ideal solution for this problem, as it
allows for a flexible query structure, ensuring that clients have more control
over the data they want to fetch from the API.

Let us start by elaborating on the pagination mechanism and under-
standing how to seamlessly implement it in a Deno GraphQL API.

Pagination in GraphQL
Consider a scenario where an API returns a list of users, and we want

to fetch only a specific number of them, or skip some. To achieve this, we
can utilize GraphQL query arguments as shown below:

“‘graphql query { getUsers(offset: Int, limit: Int) { id name } } “‘
The ‘offset‘ and ‘limit‘ query arguments represent the number of results

to skip, and the maximum number of results to fetch, respectively. Now,
we need to implement the resolver function for the ‘getUsers‘ query in
TypeScript:

“‘typescript const resolvers = { Query: { getUsers: (: any, { offset,
limit }: { offset: number; limit: number }) => { const users = ge-
tUsersFromDatabase(); return users.slice(offset, offset + limit); }, }, };
“‘

In the given example, the ‘getUsersFromDatabase‘ function is a hypo-
thetical function that retrieves user data from a database. We use the
‘Array.prototype.slice‘ method to extract the specified range of user records
from the retrieved data.

Now, let’s discuss filtering.
Filtering in GraphQL
To enable filtering of data in a GraphQL API, we can make use of

arguments in a similar way to pagination. Consider a scenario where we
want to fetch users based on their role or age range. We would define the
query as:

“‘graphql query { getUsers(role: String, minAge: Int, maxAge: Int) { id
name age role } } “‘

In this case, we have added optional ‘role‘, ‘minAge‘, and ‘maxAge‘ query
arguments. The resolver function can be implemented as follows:

“‘typescript const resolvers = { Query: { getUsers: (: any, { role,
minAge, maxAge }: { role?: string; minAge?: number; maxAge?: number }
) => { const users = getUsersFromDatabase(); let filteredUsers = users;

if (role) { filteredUsers = filteredUsers.filter((user) => user.role ===

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 171

role); }
if (minAge) { filteredUsers = filteredUsers.filter((user) => user.age

>= minAge); }
if (maxAge) { filteredUsers = filteredUsers.filter((user) => user.age

<= maxAge); }
return filteredUsers; }, }, }; “‘
The implementation demonstrates that each filter is applied sequentially

on the retrieved data. The ‘Array.prototype.filter‘ method is used to process
the ‘role‘, ‘minAge‘, and ‘maxAge‘ filters.

Next, let’s explore sorting.
Sorting in GraphQL
To allow sorting of data in a GraphQL API, we can introduce a sorting

argument, as shown below:
“‘graphql query { getUsers(sortBy: String) { id name age role } } “‘
We have added the optional ‘sortBy‘ query argument to facilitate sorting.

The resolver function will be as follows:
“‘typescript const resolvers = { Query: { getUsers: (: any, { sortBy }:

{ sortBy?: string }) => { const users = getUsersFromDatabase();
if (sortBy) { const [sortField, sortOrder] = sortBy.split(” ”); const order

= sortOrder === ”ASC” ? 1 : -1; users.sort((a, b) => { if (a[sortField]
< b[sortField]) { return -1 * order; } if (a[sortField] > b[sortField]) {
return 1 * order; } return 0; }); }

return users; }, }, }; “‘
In this example, we expect the ‘sortBy‘ argument to contain the sort

field and order, separated by an underscore, for example, ‘”age DESC”‘.
The ‘Array.prototype.sort‘ method is used to perform sorting based on the
provided arguments.

Utilizing Advanced GraphQL Features: Enums, Inter-
faces, and Unions

Enums are a convenient way of defining a set of discrete values or symbolic
constants in your GraphQL schema, representing a closed set of possibil-
ities. Enums come in handy when representing a set of values that don’t
have a direct semantic meaning beyond their identity in the dataset - for
example, the cardinal directions (north, south, east, west), or the possi-

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 172

ble statuses for order processing (pending, shipped, delivered, canceled).
Imagine you’re building an e - commerce platform; the usage of Enums in
order processing adds clarity and precision, reducing room for ambiguity
and misunderstanding.

“‘graphql enum OrderStatus { PENDING SHIPPED DELIVERED
CANCELED }

type Order { id: ID! status: OrderStatus! } “‘
Translating this schema definition into a TypeScript type declaration

for your Deno application is straightforward. Here’s an example:
“‘typescript enum OrderStatus { PENDING, SHIPPED, DELIVERED,

CANCELED, }
interface Order { id: string; status: OrderStatus; } “‘
Interfaces in GraphQL generalize the concept of object types, sharing a

set of fields across different types. As opposed to Enums, which deal with
values, Interfaces focus on the structure of the types. Think of a content
management system where each piece of content can have various formats,
for example, articles, videos, and podcasts. All of these share a common set
of fields, such as title, author, and publication date. An Interface stands as
an excellent solution to manage these shared attributes:

“‘graphql interface Content { id: ID! title: String! author: String!
publicationDate: String! }

type Article implements Content { id: ID! title: String! author: String!
publicationDate: String! body: String! }

type Video implements Content { id: ID! title: String! author: String!
publicationDate: String! duration: Int! url: String! } “‘

Now, when implementing the TypeScript counterpart for the content
types, you can leverage the power of Interface inheritance:

“‘typescript interface Content { id: string; title: string; author: string;
publicationDate: string; }

interface Article extends Content { body: string; }
interface Video extends Content { duration: number; url: string; } “‘
Finally, Unions enable the composition of different types under a common

umbrella, allowing a single field to return multiple types. In a blogging
platform containing text and media posts, you could use a Union for querying
a list of posts that include both text and media content:

“‘graphql type TextPost { id: ID! title: String! content: String! }

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 173

type MediaPost { id: ID! mediaUrl: String! description: String! }
union Post = TextPost MediaPost
type Query { posts: [Post!]! } “‘
Combining this GraphQL schema definition with TypeScript in your

Deno application can result in the following type declarations:
“‘typescript interface TextPost { id: string; title: string; content: string;

}
interface MediaPost { id: string; mediaUrl: string; description: string; }
type Post = TextPost MediaPost; “‘
Through Enums, Interfaces, and Unions, you gain the ability to create

a more flexible and powerful API that both effectively communicates the
intended design to your API’s consumers and enhances your Deno appli-
cation’s architecture. As you venture deeper into these advanced features,
the fruits of this newfound power will manifest in numerous delightful ways,
enabling you to approach new challenges and scenarios with confidence and
mastery.

GraphQL Subscriptions: Real - time Data with Deno
and WebSockets

To better comprehend the power of GraphQL Subscriptions, let’s imagine a
real - world scenario: an e - commerce platform with multiple users, where
live updates on price changes and product availability are critical for driving
sales and retaining customer satisfaction. Traditional polling techniques are
not only inefficient but also add significant load to the server as it constantly
checks for updates. GraphQL Subscriptions, however, provide a much more
elegant solution by allowing realtime updates with minimal server overhead.

To kick off our journey, we start by setting up a Deno WebSocket server.
This server acts as a central hub for all real - time communications in our
application. The WebSocket server listens for incoming connections from
clients and is responsible for managing the subscriptions created by those
clients. It will also act as the bridge between the GraphQL API and the
clients.

Once our WebSocket server is up and running, we create a basic GraphQL
server with all necessary types and resolvers to handle the various queries,
mutations, and subscriptions required by our e - commerce example applica-

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 174

tion. Deno offers a selection of libraries for working with GraphQL, enabling
seamless integration of GraphQL Subscriptions into our WebSocket server
with minimal effort.

Now that our GraphQL and WebSocket servers are in place, we can dive
into the heart of GraphQL Subscriptions - the ability to send and receive
real - time updates. Each time a price change or product availability update
occurs, the server pushes the changes through the WebSocket connection to
the subscribed clients without the need for polling. By doing so, the clients
receive instantaneous updates, leading to improved performance and user
experience.

But sending updates is just one part of the story; we must also enable
client - side handling of these subscription updates. TypeScript comes in
handy here, allowing us to create type - safe interfaces that mirror the
structure of the subscriptions and their payloads. With its help, we easily
implement logic to handle incoming updates and render them appropriately
within the application’s user interface.

As our e - commerce example application grows, it becomes critical to
efficiently manage these real - time updates and their associated clients. This
requires precise error handling, authorization mechanisms, and connection
management strategies. Through careful implementation of these best
practices, we can ensure a stable and reliable real - time communication
system for our application.

While GraphQL Subscriptions with Deno and WebSockets offer a pow-
erful way to handle real - time data, there are performance considerations
to bear in mind. For instance, ensuring the server can scale effectively
under high load and handling the multiple concurrent subscriptions can be
a challenge. But by applying appropriate optimizations and load balancing
techniques, we can overcome these obstacles to deliver an efficient, high -
performing GraphQL and WebSocket - based real - time experience.

In conclusion, our journey into the realm of real - time data with Deno,
WebSockets, and GraphQL Subscriptions has demonstrated how critical
real - time updates have become in the digital world. In our e - commerce
example, live updates were essential for retaining customer satisfaction and
driving sales. By harnessing the potential of these technologies, developers
can create a new generation of web applications filled with live interactions
and instantaneous updates, resulting in heightened user engagement and

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 175

satisfaction.

Error Handling and Validation in a Deno GraphQL API

Deno, a modern runtime for JavaScript and TypeScript, has gained substan-
tial traction in recent years for its simplicity, security, and native TypeScript
support. Interestingly, its ecosystem allows developers to create web appli-
cations that are not only performant but also enjoyable to maintain. One
of the factors that contribute to a scalable and enjoyable web application
is handling errors and validating user inputs, especially in an API context,
such as GraphQL.

Deno’s native support for TypeScript enables us to employ its powerful
type - checking and control - flow mechanisms, which significantly aid us in
handling errors and validating inputs. But before diving into the techniques,
let’s briefly recap the fundamental components of a GraphQL API.

GraphQL, as a query language, relies on two primary components:
schema and resolvers. The schema consists of type definitions that describe
the structure of data, while resolvers dictate how the data is fetched or
modified. We can use the synergy of these components to enforce specific
business rules and constraints in our API.

To begin with, let’s discuss the most common types of errors that warrant
attention when implementing a Deno GraphQL API.

1. Validation Errors: These errors usually occur due to incorrect or
incomplete user input. 2. Business Logic Errors: These are errors related to
the application’s actual implementation, such as failed database operations,
invalid mutations, or data inconsistencies. 3. Permission Errors: These
errors arise when the user doesn’t have authorization to perform specific
operations. 4. Third -Party Errors: When relying on external services, these
errors are inevitable whenever those experience issues.

Regardless of the error type, we must handle them gracefully and return
appropriate responses to our API consumers. Here are some effective
techniques and best practices for managing errors and validation in a Deno
GraphQL API:

1. Input Validation: Leverage TypeScript’s powerful type system to
define custom input types that represent the shape and constraints for user
inputs. Use these input types in your GraphQL schema to validate incoming

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 176

queries or mutations automatically.
“‘typescript // Define InputType for User Registration input Regis-

terUserInput { email: String! @constraint(format: ”email”, maxLength:
255) password: String! @constraint(minLength: 8) } “‘

2. Error Handling in Resolvers: Utilize JavaScript’s try - catch blocks
to handle errors occurring in resolvers. Catch various errors, inspect their
nature, and return them using GraphQL’s native Error class to make it
easier for clients to interpret the error.

“‘typescript const createUser = async (args: RegisterUserInput) =>
{ try { // Perform user registration logic } catch (error) { if (error in-
stanceof ValidationError) { throw new UserInputError(’Validation Error’,
error.details); } else { throw new ApolloError(’Unknown Error’, error); } }
}; “‘

3. Central Error Handling: Using Deno’s middleware concepts, create a
central error handling function for your GraphQL API. This function should
intercept all errors and process them according to their type, returning a
consistent error format to the clients.

“‘typescript const errorHandler: Middleware = async (ctx, next) =>
{ try { await next(); } catch (error) { if (error instanceof ApolloError) {
ctx.response.body = error; } else { ctx.response.body = new InternalServer-
Error(’Unexpected Error’); } } };

app.use(errorHandler).use(/* */); “‘
4. Authorization Errors: Implement custom directives to reinforce

authorization rules on your GraphQL schema. These directives can inspect
the current user’s context and throw PermissionError instances if the user
doesn’t have sufficient privileges.

“‘typescript const isAuthorizedDirective = new SchemaDirectiveVisi-
tor({ visitFieldDefinition(field: GraphQLField) { const requiredRole =
this.args.role; const originalResolve = field.resolve;

field.resolve = function (args) { const user = getUserFromContext(args[2]);
// Assumes 3rd argument is context.

if (!user.roles.includes(requiredRole)) { throw new PermissionError(‘User
is not authorized for this action.‘); }

return originalResolve.apply(this, args); }; }, });
const schema = makeExecutableSchema({ typeDefs, resolvers, schemaDi-

rectives: { isAuthorized: isAuthorizedDirective, }, }); “‘

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 177

These techniques will provide you with a reliable methodology to handle
common error scenarios and ensure a robust and fail - safe API imple-
mentation. By adopting these practices, your GraphQL API will deliver
a consistent and useful error feedback that is crucial for effective client
integration and a seamless developer experience.

As we move on, we will delve into design patterns, architectural consid-
erations, and advanced techniques for scaling Deno applications. In doing
so, we’ll explore how we can leverage error handling and input validation in
tandem with these patterns to create resilient and adaptable applications.

Securing Deno GraphQL API: Authentication and Au-
thorization Patterns

Authentication involves verifying the identity of a user accessing the API.
One popular method for implementing authentication in GraphQL APIs is
JSON Web Tokens (JWT). JWT is a compact, self - contained token which
can be securely transmitted between parties, typically as an HTTP header.
In the context of Deno and GraphQL, JWT can be created in the server
and sent to the client upon successful authentication. The client can then
include the JWT in the header of subsequent API requests, which the server
will use to authenticate the user.

Let us consider a simple example by installing a popular JWT library in
a Deno GraphQL API:

“‘javascript import { create, verify } from ”https://deno.land/x/djwt/mod.ts”;
“‘

Upon successful login, the server will generate a JWT:
“‘javascript const payload = { iss: user.id, name: user.username, };
const header = { alg: ”HS256”, typ: ”JWT” }; const jwt = await

create(header, payload, ”s3cr3t”); “‘
The token ‘jwt‘ can then be sent to the client, which will store it, typically

in browser local storage or as a secure cookie. For subsequent API requests,
the client attaches the JWT in the ‘Authorization‘ header:

“‘javascript headers: { ”Content - Type”: ”application/json”, Authoriza-
tion: ‘Bearer ${jwt}‘, }, “‘

To secure your GraphQL API, wrap your resolvers with a function that
extracts the JWT from the request header, verifies it, and proceeds to

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 178

execute the resolver if the token is valid:
“‘javascript const authenticatedResolver = async (resolver, parent, args,

context, info) => { const token = context.request.headers.get(’Authorization’);
if (!token token.split(’ ’)[0] !== ’Bearer’) { throw new Error(’Invalid

authentication token’); }
const jwtPayload = await verify(token.split(’ ’)[1], ’s3cr3t’, ’HS256’); if

(!jwtPayload) { throw new Error(’Invalid authentication token’); }
return resolver(parent, args, { context, user: jwtPayload }, info); }; “‘
Authorization takes place after successful authentication and involves

verifying if the user has the required permissions to perform certain ac-
tions. One way to implement authorization is using role - based access
control (RBAC), where each user is assigned a role, which subsequently
dictates the allowed actions on specific resources. To effectively implement
RBAC in a Deno GraphQL API, consider curating a set of static roles for
users and defining the corresponding permissions based on the application
requirements.

Let us create an example middleware function to control access to API
resources based on the roles of the authenticated user:

“‘javascript const hasRole = (allowedRoles) => { return async (re-
solver, parent, args, context, info) => { if (!context.user.role) { throw
new Error(’Access denied: Missing user role’); }

if (!allowedRoles.includes(context.user.role)) { throw new Error(’Access
denied: Insufficient permissions’); }

return resolver(parent, args, context, info); }; }; “‘
Now, suppose our application has two roles, ‘admin‘ and ‘user‘, and we

would like to restrict certain functions to the ‘admin‘ role. We can use the
‘hasRole‘ middleware to enforce this restriction on the desired operations:

“‘javascript const getUsers = async (parent, args, context, info) =>
{ // Implementation for retrieving all users };

const getUsersSecure = authenticatedResolver(hasRole([’admin’])(getUsers)
); “‘

In this example, the resolver for fetching user data is deployed through
the ‘getUsers‘ function. By wrapping it with the ‘authenticatedResolver‘
and ‘hasRole‘ middleware, we ensure that only authenticated users with the
‘admin‘ role can access this endpoint.

The combination of authentication and authorization patterns protects

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 179

Deno GraphQL APIs from unauthorized access and ensures secure usage of
application data. JWT provides a simple yet effective method to secure API
access by allowing clients to verify their identity upon subsequent requests.
Role - based access control helps restrict access to resources based on user
roles, guaranteeing that only users with proper privileges can interact with
the specified operations.

Performance Optimization: Caching and DataLoader in
Deno GraphQL

Imagine that we’re developing an e - commerce application using Deno and
GraphQL to serve products, customers, and orders. To fetch related data,
such as the customer who placed an order, our resolvers may need to make
an additional request to the underlying data source, such as the database, for
each order. As we start processing a large batch of orders, this can quickly
become a performance bottleneck. This is where caching and DataLoader
come into play.

Caching is a technique wherein frequently used data is temporarily stored
in high - speed storage, such as memory, rather than requiring continuous
retrieval from the underlying data source. Cached data can be significantly
faster to access, thus reducing the overall time taken for data retrieval and
improving the performance of the GraphQL API.

In Deno GraphQL applications, caching can be implemented in several
ways. One popular approach is to use the DataLoader library. DataLoader is
specifically designed to solve the performance and efficiency issues associated
with loading data from multiple sources, such as databases or RESTful
APIs. DataLoader can be thought of as a batching and caching mechanism
that combines multiple requests to fetch related data into a single, efficient
round trip to the underlying data sources.

To begin implementing DataLoader in our Deno GraphQL application,
we first need to install and import the library. As DataLoader is originally
created for Node.js, we can use the community - provided port for Deno
called ”deno data loader” from the deno.land registry. After installation,
we can begin configuring DataLoader within our resolvers to handle data
fetching.

Let’s assume we have a ‘Product‘ type in our schema and the corre-

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 180

sponding resolvers use a ‘ProductRepository‘ class to fetch data from the
database:

“‘typescript class ProductRepository { async findById(productId: num-
ber): Promise<product null=”” =””> { // Database query implementation
} } “‘

We can now create a DataLoader instance for our ProductRepository’s
‘findById‘ method:

“‘typescript import DataLoader from ”https://deno.land/x/deno data loader/mod.ts”;
class ProductRepository { //
productLoader = new DataLoader<number, null=”” product=”” =””>((pro-

ductIds: number[]) => { // This function receives a list of productIds
// and should return a Promise that resolves with a list of products return
this.fetchProductsByIds(productIds); });

// Implementation of batched fetch method async fetchProductsByIds(productIds:
number[]): Promise<(Product null)[]> { // Fetch products with the
given ids in a single batch } } “‘

Now, in our resolvers, we can make use of the productLoader to fetch
products efficiently:

“‘typescript const resolvers = { Query: { getProduct: async (: any, {
id }: { id: number }, { productRepo }: { productRepo: ProductRepository
}) => { return productRepo.productLoader.load(id); }, }, }; “‘

By using DataLoader, we have effectively transformed ‘N+1‘ individual
requests for product data from our GraphQL API into a single batch request.
Not only does this improve performance by reducing the number of round
trips to the data source, but DataLoader also employs caching by default.
The subsequent requests to fetch the same product within the same request
lifecycle will be served from the cache rather than hitting the underlying
data source.

To reap the full benefits of DataLoader, be aware that the caching
mechanism is scoped to the lifecycle of the DataLoader instance. It’s
recommended to create a new DataLoader instance per incoming GraphQL
request to ensure client isolation and predictable cache eviction. This can
be achieved using the context creation function in our GraphQL server
configuration.

Another important facet of caching is managing cache invalidation. When
data is modified, it’s crucial to evict stale data from the cache and ensure

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 181

that the cached data is consistent with the underlying source. Depending on
the use case, cache invalidation can be achieved using event -driven patterns
or time - based expiration policies.

In conclusion, optimizing the performance of Deno GraphQL APIs
involves effectively managing data retrieval and caching responses. By
leveraging DataLoader, we can significantly improve the efficiency and per-
formance of our GraphQL API while maintaining flexibility and consistency.
As we continue to architect and scale our Deno applications, understanding
and applying these concepts correctly will be vital in ensuring that our
applications remain performant and resilient in the face of ever - growing
data requirements and user load.</number,></product>

Testing and Debugging GraphQL APIs with Deno and
TypeScript

One of the major benefits of GraphQL is that it provides self - documenting
APIs, allowing developers to explore and interact with their schema using
introspection tools such as GraphiQL. This type of transparency simplifies
the process of testing and debugging GraphQL endpoints. However, achiev-
ing complete test coverage and correcting defects in GraphQL APIs can still
be challenging, especially when considering the dynamic nature of GraphQL
queries and mutations.

To begin testing a Deno GraphQL API, you must first set up a testing
environment. Thankfully, Deno ships with a built - in testing framework
that provides a simple and efficient approach to writing unit and integration
tests. Importantly, Deno’s test runner can run both.ts and .js files.

“‘ // tests/test base.ts import { assertEquals } from ”https://deno.land/std/testing/mod.ts”;
import { gql, SuppliedContext, testWrapper } from ”../mod.ts”;

Deno.test(”Testing basic hello world response”, async () => { const
result = await testWrapper(gql‘ { helloWorld } ‘);

assertEquals(result.data.helloWorld, ”Hello World”); }); “‘
Here, we declare a single test case that ensures our ’helloWorld’ field re-

turns ”Hello, World!” as expected. The test wrapper initializes the GraphQL
server instance and executes the supplied GraphQL query string. Should
the helloWorld resolver return an unexpected value, the test would fail,
alerting us to a problem within our API.

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 182

While the built - in Deno testing framework is powerful, test libraries like
SuperTest and Mocha provide additional features that can be beneficial. For
instance, tekartik test library enables writing tests with a similar structure
to popular JavaScript testing libraries, such as Mocha and Jasmine.

“‘ // tests/test base.ts import { describe, it, testSetup } from ”https://deno.land/x/tekartik tests/mod.ts”;
import { gql, SuppliedContext, testWrapper } from ”../mod.ts”;

const setup = testSetup();
describe(”Testing hello world response”, () => { it(”should return a

’Hello World’”, async () => { const result = await testWrapper(gql‘ {
helloWorld } ‘);

setup.assertEquals(result.data.helloWorld, ”Hello, World!”); }); }); “‘
This example demonstrates the test runner capabilities with tekartik

library. Notice how similar the syntax and structure are to JavaScript
testing libraries like Mocha.

When testing GraphQL APIs, it is essential to ensure that the defined
schema resolvers function correctly under different query conditions. This
includes various combinations of query fields and arguments. One technique
for addressing this concern is to use GraphQL mocking libraries, such as
graphql - mocks, which generate mock data based on your schema. This
simulated data helps your tests verify that resolvers and other parts of your
API function as expected, simplifying the testing process.

Debugging GraphQL APIs can sometimes be more challenging than
traditional RESTful services since you cannot easily pinpoint a specific
endpoint or HTTP method to isolate problematic code. However, several
methods can aid you in this process:

1. Utilize the abundant information provided by GraphQL error re-
sponses. These error descriptions can help you identify issues within your
code, such as incorrect resolver logic or unhandled exceptions.

2. Monitor the GraphQL server logs to identify errors and gain insights
into the performance of your API. Logs can also provide helpful information
on the occurrence of errors due to failed queries, mutations, or other issues.

3. Make use of TypeScript’s strong typing and compiler checks. These
features can help you catch common programming mistakes, such as passing
wrong argument types to functions or using incorrect object properties.

In conclusion, the combination of the Deno testing environment, addi-
tional test libraries, and TypeScript’s powerful language features provides

CHAPTER 9. BUILDING GRAPHQL APIS USING DENO AND TYPESCRIPT 183

you with the necessary tools to thoroughly test your GraphQL APIs. Em-
bracing these best practices allows you to develop high - quality, dependable
applications that you can consistently deliver to your users. By being proac-
tive with your testing and debugging strategies, you can create meaningful
and robust applications that drive successful products and services.

Chapter 10

Deno, TypeScript, and
WebSockets: Real - time
Applications

Deno, as a promising runtime environment, provides several advantages
over its predecessor, Node.js. One of these advantages includes its built - in
support for WebSockets, enabling developers to create real-time applications
more conveniently and securely. Meanwhile, TypeScript, the increasingly
popular superset of JavaScript, offers a typesafe approach to development,
leading to increased productivity and reduced likelihood of runtime errors.
This marriage of technologies presents developers with an opportunity to
create powerful, performant, and secure real - time applications, all while
leveraging the benefits of modern development paradigms and libraries.

Let’s take a deep dive into utilizing WebSockets with Deno and Type-
Script, starting with setting up a Deno WebSocket server.

WebSocket Connection: Listening and Serving in Deno and Type-
Script

To harness the real - time capabilities of WebSockets in Deno, developers
must first create a WebSocket server capable of listening for incoming
connections. In Deno, developers can achieve this through its standard
library, with throwError ‘std/ws/mod.ts‘ module, and the ‘serve‘ function
from ‘std/http/mod.ts‘. Through standard library support, developers can
create WebSocket acceptors, initiate a WebSocket upgrade, and establish
secure connections with clients.

184

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

185

Once the Deno WebSocket server is up and running, developers can
define event listeners to handle different types of incoming messages from
clients and respond accordingly. EventHandler addEventListener This is
where TypeScript offers a significant advantage. By defining custom types
and interfaces for message payloads, developers can enforce structure and
consistency in their application’s real-time data exchange, reducing potential
frustration and debugging time down the line.

Client - side Implementations
On the client - side, developers can leverage the native WebSocket API

that most modern browsers support, utilizing TypeScript for type safety
and code maintainability. By implementing custom types and interfaces for
message payloads on the client - side, just as on the server - side, developers
can establish a consistent communication protocol between server and client,
reducing the chance of errors and improving code readability.

Furthermore, TypeScript’s powerful type inference and strict type -
checking abilities help ensure the correct implementation of connection
handling, message routing, and error handling throughout the entire Web-
Socket lifecycle. This results in a more robust and maintainable real - time
application.

WebSocket Communication Patterns
WebSocket communication in Deno applications often follows specific

patterns, such as Pub/Sub or request/response. By leveraging TypeScript’s
advanced features, such as union and intersection types, developers can
create well - structured and flexible communication patterns.

For a Pub/Sub pattern, developers can define custom types for events
and event handlers, allowing the application to broadcast events and sub-
scribers to react accordingly. This can lead to a highly decoupled and
modular architecture, as components can subscribe and publish to events
independently.

For request/response patterns, developers can take advantage of Type-
Script’s discriminated union types to create a uniquely identifiable request
and response structure. This allows the server to process incoming requests,
route the request to the appropriate handler, and return a response to the
client.

Real - time Application Examples
Building a simple real - time chat application illustrates the advantages

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

186

of combining Deno, TypeScript, and WebSockets. In this scenario, the Deno
server acts as a central message broker, receiving messages from clients,
processing and storing them, and broadcasting the messages to connected
clients.

By utilizing TypeScript, developers can enforce strict types for chat
messages and events, ensuring that all clients and the server share a common
understanding of their communication protocol. This leads to a more
robust and maintainable real - time application, as type annotations serve as
documentation and living contracts for how the components of the system
should interact.

Moreover, the combination of Deno, TypeScript, and the WebSocket
standard enables the seamless integration of the chat application with
modern frontend frameworks like React, Angular, or Vue.js, resulting in
highly interactive and responsive user experiences.

In conclusion, Deno offers an excellent environment for building real -
time applications through its built - in WebSocket support and its synergy
with TypeScript. This powerful duo can result in well - structured, high
- performance, and maintainable real - time applications. As the Deno
ecosystem matures, and more developers embrace the possibilities that
TypeScript and WebSocket provide, the future of modern real - time web
application development is bright. As we move forward to explore the vast
array of third - party modules available in the Deno ecosystem, this real -
time foundation will only continue to grow stronger.

Introduction to WebSockets and Real - time Applications

As the world becomes more interconnected, it is becoming increasingly
important for web applications to operate in real - time, enabling seamless
and instant communication between users and systems across vast distances.
At the heart of these real - time applications lies a powerful communica-
tion protocol known as WebSockets, which allows browsers and servers to
establish a persistent, bidirectional communication channel.

Until the advent of WebSockets, web developers relied on inefficient
methods such as long - polling and HTTP requests to facilitate communica-
tion between the client and server. These methods were not only resource
- intensive but also introduced latency in the communication process, de-

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

187

grading the user experience. With WebSockets, developers can overcome
these challenges and power a new generation of responsive, interoperable
applications that were previously impossible with traditional HTTP - based
architectures.

The WebSocket protocol (defined by RFC 6455) provides a full - duplex
communication channel over a single TCP connection. This means that
both the client and server can send messages to each other simultaneously,
without having to open new connections for every message transmission.
The WebSocket API, as specified by the W3C, enables web browsers to
establish WebSocket connections with servers, fostering the development of
real - time applications in Deno and TypeScript.

To better appreciate the WebSocket protocol, let us consider a live stock
market dashboard that displays live prices and changes for different stocks.
With traditional HTTP - based techniques such as polling, the client would
have to send requests to the server every few seconds to obtain the latest
stock prices. Not only is this wasteful in terms of resources, but it also
introduces latency, as the client has to wait for the server response. In
contrast, a WebSocket - based solution would have the server continuously
push the latest stock prices to the client at a high frequency, resulting in a
more accurate, efficient, and responsive dashboard.

Let’s explore how we can harness the power of WebSockets using Deno
and TypeScript to create responsive real - time applications. Deno, being a
modern runtime that embraces the latest advancements in web technologies,
includes support for WebSockets out - of - the - box. Combining this with
TypeScript, a statically - typed superset of JavaScript, can lead to a robust,
maintainable, and high - performance code for real - time applications.

Getting started with WebSockets in Deno and TypeScript is straightfor-
ward, thanks to the built - in WebSocket API available in the platform. The
first step is to create a new WebSocket object, passing the address of the
server as an argument:

“‘typescript const socket = new WebSocket(”wss://my - websocket -
server.com”); “‘

WebSockets operate through a series of events, including the ”open”
event when the connection is established, ”message” event when a message
is received, ”error” when an error occurs, and ”close” when the connection is
closed. By adding event listeners to these events, we can define the behavior

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

188

of our WebSocket - based applications:
“‘typescript socket.addEventListener(”open”, (event) => { console.log(”WebSocket

connection opened:”, event); });
socket.addEventListener(”message”, (event) => { console.log(”WebSocket

message received:”, event.data); });
socket.addEventListener(”error”, (event) => { console.error(”WebSocket

error:”, event); });
socket.addEventListener(”close”, (event) => { console.log(”WebSocket

connection closed:”, event); }); “‘
With the connection established and event listeners defined, we can now

send and receive messages using the ‘.send()‘ method. For example, we can
ask the server for the latest stock price:

“‘typescript socket.send(JSON.stringify({ action: ”getLatestStockPrice”,
symbol: ”AAPL” })); “‘

The server can respond accordingly, and the client will receive the mes-
sage in the ”message” event listener. By adopting a JSON - based messaging
format, we can effectively organize and structure the communication be-
tween the client and server, resulting in a more maintainable and scalable
application.

To demonstrate the true potential of Deno, TypeScript, and WebSockets,
let’s build a simple, real - time chat application that allows users to send
and receive messages instantly. We begin by setting up the Deno server,
initiating a WebSocket connection for each client, and routing messages
between connected clients. On the client side, we use TypeScript to handle
user input, process incoming messages, and display them on the user interface.
By leveraging the benefits of Deno and TypeScript, we can create a high -
performance, secure, and reliable chat application.

In conclusion, WebSockets have paved the way for a new breed of real -
time applications, fostering bidirectional communication between servers
and clients at a level of performance and efficiency that was previously
unattainable. As developers embrace the WebSocket protocol, Deno, and
TypeScript, we can expect to see rapid advancements in the field of real -
time applications. Deno’s built - in support for WebSockets and the ease with
which TypeScript can be employed make this duo a powerful foundation
for future web innovations. As we advance further into the outline, we
will explore specific techniques, considerations, and best practices when

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

189

harnessing the power of WebSockets, Deno, and TypeScript to create real -
time applications that are not only functional but also secure and scalable.

Setting Up a Deno WebSocket Server with TypeScript

Setting up a Deno WebSocket server with TypeScript can be an exciting task
for a developer, as it combines the power of a modern runtime environment, a
type- safe programming language, and a real - time, bidirectional communica-
tion protocol. By setting up a WebSocket server, you can build applications
that require features such as live chat and collaborative workspaces, online
gaming, and real - time data visualization and analytics.

At the core of setting up a Deno WebSocket server with TypeScript is
creating a performant, scalable, and maintainable server that can handle
the intricacies and complexities of real - time messaging. Without further
ado, let’s delve into the practical aspects of this process.

The first step to building a WebSocket server with Deno and TypeScript
is to import the necessary ‘serve‘ function from the ‘http‘ module available
in Deno’s standard library. This utility helps create a simple HTTP server
we can later upgrade to WebSocket:

“‘typescript import { serve } from ”https://deno.land/std/http/server.ts”;
“‘

Next, let’s create our HTTP server and bind it to a hostname and port.
In this case, we can use ‘localhost‘ as the hostname and ‘8080‘ as the port
number:

“‘typescript const server = serve({ hostname: ”localhost”, port: 8080
}); console.log(”Listening on localhost:8080”); “‘

Now that the HTTP server is up and running, our task is to upgrade the
connections to the WebSocket protocol. To achieve this, we must implement
an asynchronous loop that processes the incoming requests to the server. In
this loop, we will check for connections that request a WebSocket upgrade
and handle them accordingly:

“‘typescript for await (const request of server) { if (request.headers.get(”upgrade”)
!== ”websocket”) { request.respond({ status: 400 }); continue; } } “‘

For connections that include the ”upgrade” header with the value ”web-
socket,” we need to utilize the native WebSocket support provided by Deno.
Import the ‘acceptWebSocket‘ and ‘WebSocket‘ types from the standard

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

190

library:
“‘typescript import { acceptWebSocket, isWebSocketCloseEvent, Web-

Socket, } from ”https://deno.land/std/ws/mod.ts”; “‘
Now, inside the loop, let’s attempt to upgrade the connection, handle it,

and respond to incoming messages. Keep in mind, a real - world application
will need additional error handling, considering all potential connection
issues:

“‘typescript try { const { conn, r: bufReader, w: bufWriter, headers
} = request; const socket = await acceptWebSocket({ conn, bufReader,
bufWriter, headers, }); console.log(”WebSocket connection established”,
socket.conn.rid); await handleWebSocketConnection(socket); } catch (error)
{ console.error(‘Failed to upgrade connection: ${error}‘); } “‘

With the connection upgraded, it’s time to process the incoming messages
from the WebSocket. Let’s create the ‘handleWebSocketConnection‘ function
to manage the communication. This function should continuously read
messages from the WebSocket and perform the necessary actions based on
the message content. For instance, we implement the function to output
every received message to the console:

“‘typescript async function handleWebSocketConnection(socket: Web-
Socket): Promise<void> { for await (const event of socket) { if (typeof
event === ”string”) { console.log(‘Received message: ${event}‘); } else
if (isWebSocketCloseEvent(event)) { console.log(‘WebSocket closed (code:
${event.code}, reason: ${event.reason})‘); break; } } } “‘

Lastly, to ensure that the program runs continuously, wrap the main
contents in an asynchronous function:

“‘typescript if (import.meta.main) { try { await main(); } catch (error)
{ console.error(‘Error: ${error}‘); } } “‘

With this implementation, you have created a fully - functioning Web-
Socket server using the Deno runtime environment and TypeScript. Test the
server by connecting to it through a WebSocket client or using JavaScript’s
native WebSocket API in a browser.

As with any starting point, this example serves as a foundation for more
advanced use cases, such as implementing authentication and authorization
strategies, handling different types of messages and data structures, and
managing distributed, real - time - capable architectures.

In summary, setting up a WebSocket server using Deno and TypeScript

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

191

is an enriching process that leverages modern technological advances, im-
proving developer experience and productivity while enabling the creation
of highly interactive, dynamic, real - time applications.

As we move forward into the ever - growing technological landscape
of WebSockets, Deno, and TypeScript, the power to build and deliver
innovative solutions for various industries becomes clearer. With an un-
derstanding of these fundamentals, you can now dive deeper into creating
more complex, sophisticated real - time applications, leading the way to
a new era of communication and collaboration enabled by cutting - edge
technologies.</void>

Client - side WebSocket Handling with TypeScript

Few innovations have revolutionized real-time communication on the web the
way WebSockets have. This protocol allows for bidirectional communication
between the client and the server over a single, persistent connection. This
vastly reduces the latency and overhead associated with traditional HTTP
requests, enabling highly interactive applications like chat rooms, online
gaming, and live data feeds.

To work with WebSockets in TypeScript, we need to leverage the built -
in WebSocket class, available in all modern browsers. This class provides
an abstraction over the raw WebSocket protocol, simplifying the process
of handling and sending WebSocket messages. The first step in using
WebSockets is to instantiate a new WebSocket object with the target server’s
URL.

“‘typescript const ws: WebSocket = new WebSocket(”ws://localhost:8080”);
“‘ Here, we create a WebSocket instance pointing to our WebSocket server
‘ws://localhost:8080‘. The URL uses the ‘ws‘ schema, indicating that we’re
using an unsecured WebSocket connection. For secure WebSocket connec-
tions, use the ‘wss‘ schema.

Once the connection is established, we can listen for various events
emitted by the WebSocket instance. These events include ‘open‘, ‘message‘,
‘error‘, and ‘close‘. To listen for an event, we attach an event listener function
to the WebSocket instance, as shown below:

“‘typescript ws.addEventListener(”open”, (event: Event) => { con-
sole.log(”WebSocket connection established”, event); }); “‘ This code snippet

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

192

listens for the ‘open‘ event, which fires when the WebSocket connection is
successfully established. The event object passed into the listener function
contains relevant information about the event. Similarly, we can listen for
messages sent by the server:

“‘typescript ws.addEventListener(”message”, (event: MessageEvent)
=> { console.log(”WebSocket message received”, event.data); }); “‘ In
this case, the listener function will be called whenever a new message
is received from the server. The event object is of type ‘MessageEvent‘,
containing the received message data in its ‘data‘ property.

Sending a message to the server is as simple as calling the ‘send‘ method
on the WebSocket instance:

“‘typescript ws.send(”Hello from the client!”); “‘ This method takes a
single argument, the message to be sent. Messages can be either strings or
binary data represented as Blob or ArrayBuffer objects.

Handling errors and disconnections is crucial for a smooth user experience.
The ‘error‘ and ‘close‘ events can be used to catch these events:

“‘typescript ws.addEventListener(”error”, (event: Event) => { con-
sole.error(”WebSocket encountered an error”, event); });

ws.addEventListener(”close”, (event: CloseEvent) => { console.log(”WebSocket
connection closed”, event.code, event.reason); }); “‘ Here, we register listener
functions for these events to log relevant information that can be used to
diagnose problems and gracefully handle disconnections.

For a more structured approach, it can be beneficial to create a Type-
Script class wrapping the WebSocket instance, allowing us to organize our
code more effectively and use TypeScript’s type system to help manage
WebSocket events and payloads. Consider the following class:

“‘typescript class WebSocketClient { private socket: WebSocket;
constructor(url: string) { this.socket = new WebSocket(url); this.socket.addEventListener(”open”,

this.handleOpen.bind(this)); this.socket.addEventListener(”message”, this.handleMessage.bind(this));
this.socket.addEventListener(”error”, this.handleError.bind(this)); this.socket.addEventListener(”close”,
this.handleClose.bind(this)); }

private handleOpen(event: Event) { console.log(”WebSocket connection
established”, event); }

private handleMessage(event: MessageEvent) { console.log(”WebSocket
message received”, event.data); }

private handleError(event: Event) { console.error(”WebSocket encoun-

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

193

tered an error”, event); }
private handleClose(event: CloseEvent) { console.log(”WebSocket con-

nection closed”, event.code, event.reason); }
public send(message: string) { this.socket.send(message); } } “‘ Now,

instead of directly interacting with the raw WebSocket instance, we have
a well - typed, organized class encapsulating the entire WebSocket logic,
making it easy to instantiate and use in our Deno applications.

WebSockets combined with TypeScript’s type system can create pow-
erful, real - time communication within your Deno applications. It opens
up vast possibilities for highly interactive web experiences for your users,
transforming the way we perceive and interact with data on the web. As
you continue on your journey with Deno and TypeScript, remember the
power that WebSockets can bring to your applications. Harness that power
and let your imagination run wild with the immense capabilities that await.

WebSocket Communication: Sending and Receiving Mes-
sages

WebSockets undoubtedly play a vital role in modern, real - time web applica-
tions, as they allow full - duplex communication between clients and servers.
The WebSocket protocol (WS for short) is designed to work over the same
ports as HTTP and HTTPS (ports 80 and 443, respectively) but uses an
entirely different communication mechanism. Deno, with its TypeScript
support, provides a powerful platform for developers intending to build
WebSocket - based applications.

Let us dive deep into the WebSocket communication in Deno and explore
how messages can be sent and received seamlessly.

Consider an online auctioning platform where users bid for products in
real - time. It is essential to have a fast, reliable, and efficient messaging
system to ensure a smooth user experience. In this scenario, WebSockets
provide the perfect solution.

First, let us create a WebSocket server that listens for incoming messages
from the clients. Deno provides the ‘serve‘ function from ‘http‘ module to
create a simple WebSocket server. You can define the server as follows:

“‘typescript import { serve } from ”https://deno.land/std@0.115.0/http/server.ts”;
const server = serve({ port: 4000 });

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

194

console.log(”WebSocket server is running on http://localhost:4000/”);
for await (const req of server) { const { conn, r: bufReader, w: bufWriter,

headers } = req; const websocketKey = headers.get(”Sec-WebSocket-Key”);
} “‘
The ‘serve‘ function accepts an object with the port number on which the

server will listen. The rest of the code within the ‘for await‘ loop processes
incoming WebSocket requests and handles the handshake process.

Now that the WebSocket server is set up, clients can connect to it by
creating a new WebSocket instance in the browser or another Deno runtime.
Let’s consider an example involving three clients connecting to the auction
server.

“‘typescript const auctionSocket = new WebSocket(”ws://localhost:4000”);
auctionSocket.addEventListener(”open”, (event) => { auctionSocket.send(”Client

connected”);
}); “‘
The clients can listen for the ”open” event, which indicates a successful

connection to the WebSocket server, and send a welcome message to the
server.

To distinguish between different messages, an application can implement
a custom message format. For instance, a JSON object with a ”type”
property can be used to categorize the messages. This approach helps in
processing various message types, such as the initial connection, bidding on
items, or acknowledging the winning bidder.

Back on the WebSocket server, a custom event handler can handle
different message types that come in. In the following code snippet, the
server processes the incoming messages from clients using pattern -matching
and updates the bids accordingly.

“‘typescript const messageHandler = async (message: string) => {
const data = JSON.parse(message);

switch (data.type) { case ”connect”: console.log(‘Client connected:
${data.clientId}‘); break; case ”bid”: updateBids(data.clientId, data.amount);
break; case ”acknowledge”: acknowledgeWinningBid(data.clientId); break;
default: console.error(”Unknown message type received:”, data.type); } };
“‘

A crucial feature of the WebSocket communication is its ability to send
messages to connected clients whenever needed. The server, for example,

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

195

can broadcast bid updates to all connected clients as shown below:
“‘typescript const broadcastBidUpdates = (clientId: string, amount:

number) => { for (const conn of allConnections) { conn.send(JSON.stringify({
type: ”bidUpdate”, clientId, amount, }),); } }; “‘

While bidding is ongoing, a client may also receive updates on the current
highest bid from the WebSocket server. Clients can implement the following
event listener to handle such updates:

“‘typescript auctionSocket.addEventListener(”message”, (event) =>
{ const data = JSON.parse(event.data);

if (data.type === ”bidUpdate”) { console.log(‘Client ${data.clientId}
has a new bid of ${data.amount}‘); } }); “‘

Conclusively, the WebSocket protocol brings full - duplex communication
to the table, empowering developers to create highly responsive and perfor-
mant real - time applications. As examined in the online auction example,
Deno and TypeScript together provide an excellent platform for developing
WebSocket - based applications that send and receive messages with ease
and efficiency.

Deno and TypeScript Code Organization for Socket -
based Applications

As WebSocket technology gains traction in the modern development land-
scape, Deno and TypeScript developers can benefit from a wide range of
opportunities to build efficient and maintainable real - time applications. To
fully harness these opportunities, it is crucial to approach code organization
with equal parts structure, scalability, and adaptability in mind.

To design a well - organized Deno WebSocket application, let’s begin
by offering a mental model. Imagine a bustling metropolis, teeming with
activity - vehicles whizzing by, citizens crossing intersections, and people
waving from busy balconies. The WebSocket protocol, much like the city’s
infrastructure, dictates how messages go from point A to point B. As a Deno
and TypeScript developer, you are the city planner, tasked with cultivating
a well - organized, seamless environment for your WebSocket -driven bustling
metropolis.

In our WebSocket metropolis, we can organize code into three distinct
realms: socket connections, message processing, and business logic. These

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

196

realms facilitate coherent and compartmentalized functionality, ensuring that
every element of the application has a clear purpose, operates independently,
and seamlessly integrates with one another.

First and foremost, socket connections act as the foundation: opening,
closing, and managing connections. To achieve this, implement a dedicated
WebSocket Manager, responsible for handling the life cycle of WebSocket
connections and emitting events as they occur. By modeling this portion
of the codebase using the Observer pattern, the WebSocket Manager acts
as the primary hub for listening and emitting events, keeping functionality
organized and adaptive to change.

Next, the message processing realm is responsible for processing incoming
and outgoing messages. Creating specialized message handlers, akin to the
Event Dispatcher pattern, allows for an organized approach to dealing with
messages. Each handler is designed to process a specific type of message,
such as chat messages, system notifications, or other user -generated content.
Separating the WebSocket Manager and message handlers empowers an
uncluttered way to create and extend functionality for new message types,
ensuring that the application remains modular and maintainable.

Lastly, the business logic realm is where application - specific rules and
data manipulation come into play. By incorporating a Service or Domain
- Driven Design approach, developers can handle specific application use
- cases while abstracting complex business logic from the socket - driven
communication layer. This strategy ensures a clear separation of concerns,
allowing the application to evolve independently of the WebSocket - oriented
code.

Integration and interaction between these realms can be efficiently man-
aged using dependency injection and inversion of control patterns. By
injecting the necessary objects and services into the other layers of the
application, we can avoid tight coupling and enhance the modularity of our
WebSocket - based Deno application.

In our WebSocket metropolis, it is essential to remember the importance
of asynchronous processing. By designing the application’s architecture to
natively support Promises and async/await constructs - leveraging the power
of TypeScript’s type system - we can guarantee that our real - time city
operates smoothly, eliminating bottlenecks while unlocking the potential for
immense scalability.

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

197

As we conclude this architectural journey through WebSocket - driven
Deno applications, it is worthwhile to reflect on the importance of orga-
nization in fostering scalability and ensuring that technical debt remains
minimal. Simple strategies like separation of concerns, design patterns, and
encapsulation not only generate a strong foundation for your WebSocket
applications but also fuel an exciting and vibrant WebSocket metropolis.

As our exploration of Deno and TypeScript applications ascends to
the next level, we will continue examining vital concepts like application
configuration and environment management, underscoring the critical role
these topics play in crafting and nurturing thriving Deno applications.

Real - time Application Use Cases and Design Patterns

Real - time applications continuously exchange data between the server
and the client, seamlessly updating the user interface without the need for
manual intervention. Inherently event - driven and concurrent in nature,
real - time applications open up myriad possibilities for user engagement
and interaction. Communication technologies, including WebSocket and
Server - Sent Events (SSE), allow for instant, low - latency bidirectional
communication between the server and connected clients. Deno, with its
TypeScript - first approach and Web API compatibility, offers the perfect
platform for building scalable and maintainable real - time applications.

To set the stage, let’s first take a journey through some of the com-
pelling use cases where real - time applications could revolutionize the user
experience:

1. Instant notifications: From social networks to e - commerce platforms,
in - app notifications have emerged as the cornerstone of user engagement.
Real - time applications ensure that users receive updates immediately,
keeping them engaged and informed.

2. Stock trading platforms: In the world of financial trading, every
second counts. Real - time applications thrive in this environment, as they
can seamlessly push live updates to users and execute trades faster than
traditional request - response mechanisms.

3. Multiplayer gaming: Fast - paced multiplayer gaming demands real -
time data exchange for smooth gameplay and seamless lobby management.
Real-time applications can power the leaderboard updates, chat functionality,

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

198

and live in - game events, enhancing the gaming experience.
4. Real - time analytics and monitoring: From web traffic to system

health metrics, monitoring real - time data helps businesses make informed
decisions. Real - time applications can process and visualize an enormous
volume of data, providing valuable insights to clients.

5. Internet of Things (IoT): Streaming and processing data from IoT
devices, such as smart homes or industrial sensors, and providing actionable
insights, is an area where real - time applications can unleash their true
potential.

Now, armed with an understanding of scenarios that warrant real - time
application development, let’s explore some design patterns and architectural
concepts that can help us implement these use - cases effectively in Deno.

1. Publish - subscribe (pub - sub) pattern: A paramount pattern for real
- time applications, the pub - sub pattern decouples the producers of data
(publishers) and the consumers of data (subscribers). Deno can establish a
WebSocket server that acts as a central message broker, enabling publishers
and subscribers to exchange information without being aware of each other
directly.

2. Command Query Responsibility Segregation (CQRS): In CQRS, the
write (command) and read (query) responsibilities are separated, allowing
for independent scalability and optimization. In real - time applications, this
pattern can be of great value, as it enables efficient handling of numerous
clients sending data concurrently without overloading the system.

3. Event Sourcing: This pattern involves storing a history of events that
lead to the current state of the application. It’s an excellent fit for real
- time applications, as events can be published asynchronously to update
the frontend user - interface. Deno’s native support for concurrency and
asynchronous processing simplifies the implementation of event sourcing.

4. Actor Model: The Actor Model is a design pattern for handling
concurrency where actors (independent entities) send and receive messages
asynchronously, with each actor maintaining its state. This pattern aligns
well with the nature of real - time applications, as it provides a robust
solution for client - server communication.

To wrap up, the possibilities for innovation and engagement through real-
time applications are limitless, whether it’s building an online auction system,
a real - time messaging service, or a sophisticated monitoring dashboard. By

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

199

adopting suitable design patterns and leveraging the unique strengths of
Deno and TypeScript, developers can create scalable, maintainable, and
efficient real - time applications that power the next generation of interactive
experiences. As we venture further into the realms of Deno, we’ll grasp how
integrating these patterns into our projects will lead us steadily towards the
future of web development.

Securing WebSocket Connections in Deno Applications

Securing WebSocket connections in Deno applications is a crucial task for
developers to ensure the privacy and integrity of data exchanged between
clients and servers. Before diving into the specifics of securing WebSocket
connections, it is essential to understand what WebSockets are and how
they work in the context of Deno applications.

WebSockets enable real - time, bidirectional communication between
clients and servers over a single, long - lived connection, often employed
in chat applications, online gaming, real - time collaboration tools, and
notifications. However, the WebSocket protocol is independent of the secure
version of HTTP (HTTPS), and therefore, securing WebSocket connections
requires special attention and separate security measures.

Firstly, it is important to use the secure variant of the WebSocket
protocol, known as WebSocket Secure (WSS), which operates over Transport
Layer Security (TLS) similar to HTTPS. When configuring a WebSocket
server in Deno, make sure to create a TLS connection by providing the
necessary TLS certificates, keys, and options. This ensures that all data
exchanged over the WebSocket connection is encrypted and protected against
eavesdropping and tampering. A simple example of creating a secure
WebSocket server in Deno is shown below:

“‘typescript import { serveTLS } from ”https://deno.land/std/http/mod.ts”;
const server = serveTLS({ port: 8080, certFile: ”path/to/tls/cert.pem”,

keyFile: ”path/to/tls/key.pem”, });
for await (const req of server) { const { conn, r: bufReader, w: bufWriter,

headers } = req;
// Perform WebSocket handshake, check for ”Upgrade: websocket”

header, etc.
// Create and configure secure WebSocket connection const webSocket

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

200

= new WebSocket({ conn, bufReader, bufWriter, mask: false, headers, });
// Handle WebSocket messages, events, etc. } “‘
Enabling secure WebSocket connections does not only require server-side

configuration but also involves updating the client - side code. In the client
- side JavaScript or TypeScript code, make sure to use the ‘wss://‘ URL
scheme for connecting to the WebSocket server, as shown in the following
example:

“‘javascript const webSocket = new WebSocket(”wss://example.com/ws”);
// Handle WebSocket events, messages, etc. “‘
Besides encrypting the WebSocket connection, securing the application

involves implementing authentication and authorization mechanisms for
controlling access to WebSocket resources. While traditional authentication
methods designed for RESTful APIs and HTTP - based applications can
prove cumbersome in the WebSocket context, modern solutions like JSON
Web Tokens (JWT) can be easily adapted for use with WebSockets.

For instance, the server can verify the client’s JWT during the initial
WebSocket handshake and establish the connection only if the token is
valid. This process can be extended to support role - based access control
(RBAC), by checking the user’s permissions encoded within the JWT and
allowing or denying access to specific WebSocket resources. Combining JWT
authentication with secure WebSocket connections leads to a robust and
resilient real - time application, effectively thwarting potential attacks and
data breaches.

Moreover, it is essential to be vigilant about Cross - Site WebSocket
Hijacking (CSWH) attacks, where malicious websites trick users into sending
unauthorized WebSocket messages to a vulnerable server. To prevent such
attacks, always verify the ‘Origin‘ header during the WebSocket handshake
process and verify that it belongs to a trusted domain. Denying connections
with an untrusted or missing origin header is a critical step towards securing
WebSocket applications.

Lastly, ensure that the WebSocket connection is adequately secured
against denial - of - service (DoS) attacks, which can manifest in the form of
unauthorized clients consuming server resources or flooding the server with
messages. Employ techniques such as rate limiting, IP blocking, and banning
misbehaving clients based on their patterns of suspicious behavior, thereby
enhancing the reliability and stability of your WebSocket application.

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

201

Building a secure WebSocket based Deno application requires developers
to embrace a holistic approach to security, which encapsulates encryption,
authentication, and authorization, as well as addressing CSRF and DoS
attack vectors. Although creating a secure application is a challenging
endeavor, realizing these goals ensures the protection of user data and
maintains the trust of your application’s user base.

Venturing forth, the book will discuss leveraging third - party WebSocket
Libraries in Deno projects, showcasing how they can make your real - time
applications safer, more efficient, and easier to maintain. Embracing these
libraries often yields a more ergonomic developer experience, enables a
clearer focus on your application’s unique functionality, and serves as a
testament to the power of Deno’s growing ecosystem.

Performance Considerations and Best Practices for Web-
Socket Applications

Web applications have come a long way from the days of static pages and
AJAX - based updates. In today’s dynamic and interactive web, users
expect real - time communication and updates, making WebSocket - based
applications a necessity. While building these applications brings a plethora
of benefits and opportunities, it also comes with its share of performance
considerations and best practices any developer must carefully observe. Un-
derstanding these performance nuances ensures that WebSocket applications
are smooth, efficient, and provide the best possible user experience without
yielding on security.

WebSocket applications differ fundamentally from traditional request -
response models of communication used by the HTTP protocol. By using a
bidirectional channel, WebSockets enable real - time communication with
a persistent connection between the client and the server. This unique
communication model brings a new set of challenges in terms of performance
that must be acknowledged and addressed.

Reducing the latency of WebSocket connections is one of the most
critical performance considerations. Given that WebSockets establish a
long - lived connection with the server, minimizing connection time will
ensure faster communication and quick user experience. To achieve low
- latency connections, it’s essential to select the closest server location

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

202

to the users, adopt compression techniques to minimize the amount of
data transferred, and potentially use content delivery networks (CDNs)
optimized for WebSocket applications. Additionally, regularly monitoring
round - trip time (RTT) for WebSocket connections can provide useful data
for identifying bottlenecks and optimizing latency for users.

Another essential element in WebSocket performance is the efficient
handling of message serialization and deserialization. Although WebSockets
support text and binary formats for data transmission, a common practice
is to serialize the data into JSON format for easy processing and semantic
clarity. However, JSON handling may have performance implications when
dealing with large payloads or sending messages at a high frequency. In these
situations, it might be beneficial to explore alternative serialization formats
such as MessagePack or Protocol Buffers that provide a more compact and
efficient data encoding.

Since WebSocket applications allow concurrent connections between a
client and a server, it is essential to ensure the server can efficiently handle
multiple connections. Server performance can be improved by avoiding
blocking operations that limit concurrency and scalability. Instead, look for
asynchronous libraries and non - blocking methods in your server - side code.
Moreover, leveraging server - side resources like caching, data partitioning,
and connection pooling can significantly boost performance, especially when
under high load.

Implementing auto - reconnect and message recovery strategies can sig-
nificantly boost the robustness of WebSocket applications. WebSocket
connections can be fragile, and users may experience disconnections due to
factors like network instability or temporary server unavailability. Imple-
menting a strategy to detect disconnections and automatically re - establish
a connection ensures a seamless user experience. Additionally, buffering and
replaying unacknowledged messages can help maintain application state and
guarantee message delivery.

One of the most crucial responsibilities when building real - time applica-
tions is to ensure that they remain secure and resilient to various types of
attacks. WebSocket applications are no exception to this rule. It’s essential
to incorporate secure practices such as encrypting data using SSL/TLS,
validating and sanitizing input to protect against injection - based attacks,
and mitigating distributed denial of service (DDoS) attacks by limiting the

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

203

connection rate and leveraging secure CDNs.
Finally, performance monitoring and optimization are continuous pro-

cesses in the development of WebSocket applications. Comprehensive in-
strumentation, monitoring, and profiling can provide valuable insights into
various aspects of application performance, including but not limited to,
connection time, message throughput, and server resource utilization. Lever-
aging tools like browser DevTools, tracing libraries, monitoring services, and
load testing tools can help identify performance bottlenecks and areas of
improvement.

To conclude, implementing WebSocket applications is not merely a
technical achievement but an art in crafting real-time experiences that blend
performance, security, and usability. Careful consideration of performance
aspects, continuous monitoring, and optimization will ensure that WebSocket
applications provide a seamless, scalable, and delightful experience for
the users. Remaining mindful of this achievement, apply your newfound
knowledge of best practices to give life to an amazing WebSocket - based
application, whether it’s a chat app, real - time market dashboard, or IoT
control panel.

Building a Real - time Chat Application with Deno,
TypeScript, and WebSockets

A real - time chat application serves as an excellent example of the potential
that Deno, TypeScript, and WebSockets offer when combined. Let us
embark on an exciting journey to create a capable chat application utilizing
these powerful tools, showcasing the various features and capabilities they
bring to the table.

To start off, we create a new Deno project directory for our chat applica-
tion. Ensure that you have the Deno runtime and the TypeScript compiler
installed and configured correctly on your development machine. Next, we
set up our project structure with relevant files and directories reserved for
the server - side logic, client - side logic, shared types, and utility functions.

Our chat application relies on WebSockets to enable real - time com-
munication between the server and its connected clients. We begin by
setting up a WebSocket server in our Deno application, utilizing the
‘Deno.upgradeWebSocket‘ function to create a WebSocket connection when

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

204

clients connect to a desired endpoint. Here, we listen for incoming ‘open‘,
‘message‘, and ‘close‘ events to facilitate the subsequent exchange of messages
among different clients.

“‘ import { acceptWebSocket, isWebSocketCloseEvent, isWebSocket-
PingEvent } from ”https://deno.land/std/ws/mod.ts”;

async function handleWs(sock: WebSocket) { try { for await (const
ev of sock) { if (typeof ev === ”string”) { // broadcast the received
message to all connected clients } else if (isWebSocketPingEvent(ev)) { //
respond to ping event } else if (isWebSocketCloseEvent(ev)) { // remove
the WebSocket connection from a list of active connections } } } catch (err)
{ console.error(”WebSocket error:”, err); } } “‘

Now that our WebSocket server is in place, we turn our attention to
the client - side logic residing in the web browser. We utilize the built - in
‘WebSocket‘ API offered by modern browsers, combined with TypeScript
for static typing enhancements, to create a new WebSocket connection to
our server. Subsequently, we set up event listeners to react to incoming
messages, process user input, and update the user interface in real - time.

“‘ const socket = new WebSocket(”ws://localhost:8080/chat”);
socket.addEventListener(”open”, (event) => { console.log(”WebSocket

connection established:”, event); });
socket.addEventListener(”message”, (event) => { console.log(”Message

received from server:”, event.data); // update the user interface with the
received message });

socket.addEventListener(”close”, (event) => { console.log(”WebSocket
connection closed:”, event); }); “‘

At this point, our chat application can establish real - time WebSocket
connections for multiple clients. However, to make our chat application
more useful and engaging, we need to introduce essential features such as
user authentication, unique usernames, message history, emojis, and more.
Using TypeScript interfaces and type guards, we can define the structure of
our messages and ensure that the received messages adhere to the expected
format.

“‘ interface ChatMessage { type: ”chat”; username: string; content:
string; }

interface UserJoinedMessage { type: ”userJoined”; username: string; }
“‘

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

205

By employing modern TypeScript features such as optional chaining,
nullish coalescing, and type guards, we can handle edge cases gracefully,
providing a robust and maintainable codebase for our chat application.

Now, as our chat application starts to take shape, we need to plan for
a secure deployment. To ensure the security of network communication,
we must implement SSL/TLS encryption for our WebSocket connections.
Besides, we might consider introducing rate limiting and user-authentication
mechanisms to protect our application from potential malicious activities.

In conclusion, building a real - time chat application with Deno, Type-
Script, and WebSockets demonstrates the power and flexibility that this
new ecosystem offers. It paves the way for innovative and fascinating appli-
cations capable of harnessing the full potential of real - time communication.
Our journey doesn’t stop here; while we focus on the essential components
required to craft a chat application, the next step responsibilities lies on
the developer’s creativity to explore and implement additional features and
optimizations that can propel the application to new heights.

As we’ve seen throughout this exhilarating exercise, Deno, TypeScript,
and WebSockets are a potent trio that, when harnessed effectively, pave the
way for an exceptional real - time communication experience. Equipped with
newfound experience, we must reflect, iterate, and improvise to continuously
unleash their full potential in building even more impressive applications in
the future.

Leveraging Third - Party WebSocket Libraries in Deno
Projects

can provide an enhanced architecture for building real - time applications.
WebSocket protocol enables bidirectional communication between the server
and client, opening a range of opportunities for developers to create interac-
tive web services, chat applications, gaming servers, and more. Deno, with
its built - in WebSocket support, promises a powerful and secure environment
for developers to build their real - time applications.

Although the native WebSocket support provided by Deno is adequate
for general use, it may have some limitations when it comes to implement-
ing advanced features and functionalities that are common in real - time
applications. This is where third - party WebSocket libraries come into play.

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

206

These libraries aim to provide a more comprehensive API, higher - level
abstractions, better error handling, and ease of use for developers.

One notable third - party WebSocket library for Deno is ‘oak‘ - a mid-
dleware framework that heavily derives its inspiration from Koa and can
be easily extended with WebSocket support. To use WebSocket in an ‘oak‘
application, first, you need to add it as a dependency in your project. Import
the desired components from the ‘oak‘ library and create a new application
object.

Below is an example of how to create a simple WebSocket server using
‘oak‘:

“‘typescript import { Application, WebSocketContext } from ”https://deno.land/x/oak/mod.ts”;
const app = new Application();
app.use(async (ctx, next) => { if (!ctx.request.isUpgradable) { return

await next(); }
const socket = await ctx.request.upgrade(); const wsContext = new

WebSocketContext(socket);
for await (const event of wsContext) { if (typeof event === ”string”) { //

Handle text message from the client wsContext.send(‘Received: ${event}‘);
} } });

await app.listen({ port: 8080 }); “‘
Another popular WebSocket library is ‘ws‘, which is a lightweight yet

powerful WebSocket implementation for Deno. It is highly configurable,
enabling developers to create custom WebSocket components easily. To use
‘ws‘, simply import the desired components from the library and create a
new WebSocket server:

“‘typescript import { serve } from ”https://deno.land/std/http/server.ts”;
import { acceptWebSocket, WebSocket } from ”https://deno.land/std/ws/mod.ts”;

const server = serve({ port: 8080 });
for await (const req of server) { const { conn, r: bufReader, w: bufWriter,

headers } = req;
try { const ws: WebSocket = await acceptWebSocket({ conn, bufReader,

bufWriter, headers, });
console.log(”WebSocket connection established”); // WebSocket event

handling logic goes here } catch (error) { console.error(‘Failed to accept
WebSocket connection: ${error}‘); req.respond({ status: 400 }); } } “‘

When selecting a third - party WebSocket library, consider factors such

CHAPTER 10. DENO, TYPESCRIPT, AND WEBSOCKETS: REAL - TIME
APPLICATIONS

207

as ease of use, scalability, support for advanced features, community engage-
ment, and overall maintainability. Most third - party libraries are available
on Deno’s official site and GitHub, where developers can evaluate their
respective performance, usability, and ecosystem.

In conclusion, third - party WebSocket libraries can help developers to
overcome limitations and enhance the capabilities of their Deno real - time
applications. These libraries offer valuable abstractions, improved error
handling, and a richer set of functionalities, making it easier for developers
to create complex and high - performance real - time applications. As the
Deno ecosystem continues to evolve, we can look forward to even more
options and flexibility in designing and building interactive and engaging
web services.

Chapter 11

Utilizing Third - Party
Modules in Deno Projects

Utilizing third - party modules is an essential part of modern software
development as it allows developers to leverage existing, well-tested solutions
to efficiently solve common problems. In the world of Deno, this practice
is just as important as in any other programming ecosystem. While Deno
offers a promising array of built - in modules and standard libraries, there
will often be use cases that require external functionality. This is where
third - party modules come into play to further expand Deno’s capabilities
and ensure continuous improvement.

Let’s explore the exciting possibilities of working with third - party
modules in Deno, all while minimizing risks and thoroughly assessing their
security and performance implications.

A critical first step when utilizing third - party modules is discovering
and evaluating suitable candidates for your specific project requirements.
With the explosive growth of the Deno ecosystem, a vast array of third -
party modules is now available on the official Deno third - party modules
registry website (deno.land/x), as well as through GitHub repositories. You
can determine the quality and trustworthiness of potential modules by
scrutinizing documentation, dependencies, the number of stars, forks, and
contributors, together with its recent maintenance and update history.

Suppose quality assurance and reliability have been firmly established
for your chosen third - party module. In that case, it’s time to skillfully
integrate the new module into your project. Importing third - party modules

208

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 209

in Deno is as simple as specifying the complete URL of the module with
the version tag if needed. For instance, importing and using the popular
”abc” module to create a basic HTTP server can be done as follows:

“‘typescript import { Application } from ”https://deno.land/x/abc@v1.2.0/mod.ts”;
const app = new Application();
app.get(”/”, (ctx: any) => { return ”Welcome to the Deno World!”;

});
app.start({ port: 8080 }); “‘
While importing modules via URL is convenient, maintainability can

become an issue as a project grows in complexity. To combat this, Deno
employs import maps that allow you to map URLs to friendly, semantic
names, ensuring readability and maintainability. An import map must be
specified as a JSON file and passed to Deno upon starting the development
server using the ‘ - - importmap‘ flag.

As we embark on our journey through external modules in the Deno
ecosystem, we must be cognizant of performance and security concerns.
Relying on third - party code has inherent security risks, such as exposed
vulnerabilities or even malicious intent. Therefore, thoroughly scrutinize
each module and only grant specific permissions necessary for the module
to function correctly. For instance, if a module only requires access to the
filesystem, use the ‘ - - allow - read‘ or ‘ - - allow - write‘ flags to exclusively
grant read or write permissions.

Moreover, third - party modules can affect application performance by
introducing slowdowns and inefficiencies, mainly when bundled or used in
conjunction with other third - party modules. To minimize these risks, opt
to use well - maintained and optimized third - party modules and frequently
assess the impact of modules on performance by monitoring Deno application
metrics, using profiling tools or techniques like code splitting to reduce the
application’s bundle size.

Once third - party modules have been successfully integrated into your
Deno project, it’s crucial to ensure that they stay up - to - date and free of
security vulnerabilities. Use a progressive update approach that integrates
module updates into your development process, assesses their impact on your
application, and verifies that no new security vulnerabilities are introduced.
Be prepared for scenarios where you may need to replace particular modules
due to obsolescence or incompatibilities with your code, infrastructure

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 210

changes, or other modules.

Overview and Importance of Third - Party Modules in
Deno Projects

As any developer knows, one of the most significant advantages of modern
programming ecosystems is the extensive availability of third-party modules.
These modules, developed and maintained by the community, provide vital
functionality for various aspects of software development, saving countless
hours of work by offering readily - available, battle - tested solutions. Deno,
as a newer runtime environment for JavaScript and TypeScript, has ushered
in a new era for third - party modules, aiming to rectify the shortcomings of
its predecessor, Node.js.

Before delving into the third - party module scene in Deno, it is crucial
to understand the distinction between Deno and Node.js when it comes to
modules. Node.js, while revolutionary, came with a substantial dependency
on the centralized npm package registry and the notorious ‘node modules‘
folder. This centralized repository led to a heavily fragmented ecosystem,
dominated by numerous small modules and poor dependency management.
Consequently, many projects suffered from bloated and often unnecessary
dependencies, creating security risks and performance issues.

In stark contrast, Deno embraces a decentralized module system, inspired
by modern web standards such as ES modules and remote imports. Deno
developers can easily import modules via URLs, eliminating reliance on a
centralized registry and the infamous ‘node modules‘ folder. This decentral-
ized approach promotes a more thoughtful and intentional adoption of third
- party modules, ultimately resulting in leaner, more secure applications.

So, why are third - party modules essential for Deno projects? The
reasons are manifold:

1. **Enhanced productivity**: Creating everything from scratch can be
a daunting, time - consuming task. Leveraging third - party modules allows
developers to focus on building unique features and functionality that cater
to the specific needs of their project.

2. **Shared expertise**: Modules maintained by the community rep-
resent the collective wisdom and experience of numerous developers, thus
ensuring that solutions have been thoroughly tested and optimized for

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 211

various use cases.

3. **Reduced redundancy**: Using third - party modules allows for code
reuse and prevents duplication of effort across projects. By relying on a
shared set of tools and libraries, developers can write more maintainable
and scalable code.

4. **Faster time-to -market**: By utilizing existing modules, developers
can expedite the development process, bringing their applications to market
faster than if they were to create everything from scratch.

5. **Collaborative improvement**: Open - source projects thrive when
many developers contribute to a common codebase. By using and con-
tributing to third - party Deno modules, developers foster a collaborative
ecosystem that continuously improves the overall quality of the modules
themselves and the applications that rely on them.

In the world of Deno, there are already numerous third - party libraries
available to make developers’ lives easier. These libraries cover a wide range
of use cases, from web framework abstractions to utility and helper functions,
from database connectivity to state management, and from authentication
to API rate - limiting. As the Deno community continues to grow, the
availability and diversity of third - party modules will expand exponentially.

While third - party modules are indispensable, it is crucial to approach
them with caution, carefully evaluating each module for security, main-
tenance, and compatibility concerns. A well - curated set of third - party
modules can significantly enhance productivity and ensure a more reli-
able and secure application, while a poorly evaluated one can introduce
vulnerabilities and technical debt.

In conclusion, the power of third - party modules in Deno cannot be
understated. These libraries provide an essential foundation upon which
developers can construct ambitious, complex applications more efficiently
and effectively. By embracing the decentralized module system, Deno has
taken a step in the right direction, allowing developers to build leaner, more
secure software while fostering a collaborative ecosystem. As we delve deeper
into the intricacies of Deno, it is vital to remember that third-party modules
are a cornerstone of this promising platform, and their thoughtful adoption
will fuel the creation of revolutionary applications, further solidifying Deno’s
position as a fresh contender in the JavaScript and TypeScript domain.

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 212

Discovering and Evaluating Third - Party Modules

Every development journey begins with a problem to solve, and an engineer
looking for the most appropriate third - party module. The key is to
understand the trade - offs between reinventing the wheel and leveraging
existing code. The first step in discovering third -party modules is to narrow
down the main functionality you seek. To aid in this process, begin by
considering the following:

1. What is the goal of your project? 2. What programming paradigms
do you adhere to? 3. What specific features are you looking for in a module?

With a clear understanding of your needs, the following methods will
assist in searching for high - quality Deno modules:

1. Deno’s official module registry: Explore the deno.land/x website which
hosts thousands of third - party modules. The registry is well - maintained,
categorized, and searchable to ease the process of discovering modules
tailored for Deno applications.

2. GitHub and GitLab searches: Utilize advanced search capabilities
on social coding platforms like GitHub or GitLab to uncover repositories
matching your desired functionality.

3. Package ranking websites: Browse websites, such as module-ranking.com,
which rank JavaScript and TypeScript packages based on their popularity
and usefulness.

4. Community recommendations: Seek advice from the Deno community
through forums, mailing lists, chat platforms, and networks such as Stack
Overflow and Reddit.

Once you identify some promising options, it is crucial to evaluate each
module to determine if it aligns with the requirements of your application.
The following factors can help you distinguish high - quality third - party
modules:

1. Popularity: Investigate the number of weekly downloads, stars, forks,
and watchers on platforms like GitHub and GitLab to gauge the module’s
popularity, relevance, and credibility. High numbers indicate widespread
adoption and a potential wealth of shared knowledge.

2. Documentation: Peruse the module’s documentation to judge its
usability, understandability, and clarity. A well - written README file,
detailed usage guidance, and API references are essential for a painless

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 213

integration.
3. Test coverage: Assess the module’s test suite, if available, to get a

sense of its reliability and resilience to change. Modules with comprehensive
test coverage tend to have fewer bugs, provide better support, and are easier
to maintain over time.

4. Dependencies: Pay attention to the module’s dependencies, as ex-
cessive or insecure dependencies can make your application bloated and
introduce potential vulnerabilities or conflicts.

5. License: Confirm that the module’s license permits you to use and
modify the code in a way that aligns with your project’s legal requirements.

6. Activity and maintenance: Review the module’s commit history, issue
tracker, and release schedule to gauge how well - maintained and up to date
the module is. Be cautious of repos with infrequent updates or a large
number of unresolved issues.

7. Compatibility with Deno: Ensure that the module is compatible with
Deno and supports relevant permissions, import/export syntax, and security
practices.

A real - world example can help solidify the concepts we discussed.
Imagine you are searching for a logging library for your Deno application.
After searching through various resources, you identify two popular options:
‘logosaur‘ and ‘oak - logger‘. Here’s how you might evaluate these modules:

1. Popularity: Compare the number of stars, forks, and average weekly
downloads for each module. 2. Documentation: Review the available
documentation, examples, and API references to determine which is clearer
and better suited to your needs. 3. Test coverage: Examine the test files
and reports to evaluate the modules’ code assurance and reliability. 4.
Dependencies: Investigate how many dependencies each module requires
and if these pose potential risks. 5. License: Verify that both modules have
licenses appropriate for your intended use. 6. Activity and maintenance:
Compare the modules’ recent commit activity, issue tracker engagement,
and the release frequency to determine the better - maintained project. 7.
Compatibility with Deno: Test each module by integrating it into a small
Deno project to confirm compatibility.

In conclusion, carefully discovering and evaluating third - party modules
is a complex yet essential task to choose the best solution for your Deno
application. Evaluating factors such as popularity, documentation, test

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 214

coverage, dependencies, license, activity, and maintenance ensures you select
strong, secure, and capable modules for your needs. In the next part of
this book, we will explore how to import and manage third - party modules
in Deno projects, as well as integrating them with the Deno application
architecture. The ability to discern the best - in - class modules will not only
enhance your Deno projects but also equip you with indispensable skills
that extend to other technologies and languages.

Importing and Managing Third - Party Modules in Deno
Projects

As a modern, streamlined runtime, Deno aims to provide developers with
a rich, yet secure environment for writing server - side applications. One
of Deno’s most distinctive features is its approach to handling third - party
modules.

In a departure from Node.js, Deno does not have the node modules
directory or require the use of package.json and npm. Instead, it adopts
the web - like approach of using URLs for importing modules. This strategy
offers several benefits, such as reducing dependencies and improving security,
as well as creating a more enjoyable developer experience.

Importing Third - Party Modules in Deno
To get started with using third-party modules in Deno, take the following

steps:
1. First, find the desired module on the official Deno modules website

at https://deno.land/x. This registry contains Deno - compatible libraries
published by the community. Consider evaluating their documentation,
usage examples, and the number of stars to ensure their quality before
deciding to use a module.

2. Once you’ve chosen a module, you can import it into your Deno
application using the ES module syntax. Be sure to include the complete
URL in the import statement, and don’t forget to add the file extension as
well. For instance, importing the ‘abc‘ module would look like this:

“‘typescript import { Application } from ’https://deno.land/x/abc/mod.ts’;
“‘

3. With the module imported, you can now use its provided features in
your code, as demonstrated in the module’s documentation.

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 215

Managing and Updating Third - Party Modules in Deno
Despite the convenience of importing modules with URLs, this technique

can lead to some challenges, such as managing multiple module versions
and ensuring compatibility throughout your application. To mitigate these
issues, consider these best practices:

1. Create a ‘deps.ts‘ file at the root of your project, where you can
place all your imports. This way, you centralize module management and
can easily track and update dependencies across your application. Your
project’s main ‘mod.ts‘ file, as well as other files, should import modules
from this ‘deps.ts‘ instead of loading them directly. For example:

“‘typescript // in deps.ts export { Application } from ’https://deno.land/x/abc/mod.ts’;
// in mod.ts or other files import { Application } from ’./deps.ts’; “‘
2. To avoid breaking changes and ensure your application’s stability,

use the ‘@version‘ syntax in your import URLs. This syntax allows you to
specify the exact version of a module you want to use, rather than opting
for the latest release by default. For example:

“‘typescript // Use version 1.0.0 of abc module import { Application }
from ’https://deno.land/x/abc@1.0.0/mod.ts’; “‘

3. When updating to a newer version of a module, first consult the
module’s changelog or release notes to gather information on any breaking
changes. Be sure to test your application thoroughly after updating to
ensure compatibility.

Addressing Performance and Security Concerns
Using third - party modules in your Deno projects necessitates careful

consideration of performance and security. Here are a few ways to optimize
your application’s performance while mitigating security risks:

1. Leverage ”tree shaking” to minimize the runtime impact of imported
modules. Tree shaking is the process of eliminating dead code paths in the
final compiled module. Deno utilizes a built - in bundler that can tree shake
your application.

2. Use the ‘ - - lock‘ flag when running Deno applications to create a
lock file and fingerprint your dependencies. This ensures that subsequent
installations of the project will only use the exact versions specified in the
lock file, which is useful for maintaining consistent behavior across multiple
installations.

When dealing with third - party modules in Deno, always keep optimiza-

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 216

tions and security in mind. Your vigilance will ensure that your application
runs smoothly and securely.

As we progress through this Deno journey, we’ll bridge these considera-
tions with practical examples of leveraging third - party modules in various
application scenarios. Harnessing the power of Deno’s unique module load-
ing system, you’ll learn how to create simple, impactful applications, from
secure REST APIs to real - time chat applications using WebSockets.

Integrating Third - Party Modules with the Deno Ap-
plication Architecture

The Deno application architecture provides a solid foundation for building
modern, efficient, and secure web applications. As developers, we often
find ourselves faced with tackling complex problems that could be easily
solved by leveraging existing solutions. Integrating third - party modules
into a Deno application architecture is not only a practical approach to
solving problems, but also an effective way of ensuring code maintainability,
modularity, and optimization.

Consider the scenario where you’re developing an e-commerce application
that needs to interact with a multitude of external services such as payment
gateways, shipping providers, and product inventory systems. Instead of
reinventing the wheel, you decide to leverage the existing modules and
packages that the Deno ecosystem offers.

The first step in this process is to identify the appropriate third - party
modules to integrate into your application. To do so, explore the various
available resources, including the deno.land/x registry and the Deno commu-
nity discussions. Once you’ve chosen the module(s) that best cater to your
application’s needs, proceed to import the module into your application
using the standard ES module syntax. For example, to use the popular
”SuperDeno” module for testing HTTP servers, simply import it as follows:

“‘ import { superdeno } from ”https://deno.land/x/superdeno/mod.ts”;
“‘

Notice how the module is imported directly from the URL, exemplifying
one of Deno’s main design principles - zero - setup, no package manager
dependence.

When integrating third -party modules in a Deno application, it’s crucial

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 217

to consider and manage the permissions required by these modules. Deno
enforces a security-first approach, which entails granting explicit permissions
for various actions such as network access, file system access, and process
management. To ensure your application maintains a secure environment,
follow the principle of least privilege and grant the exact permissions required
by the third - party module.

For example, if a module needs to read and write files exclusively from
a specific directory, use the ‘ - - allow - read‘ and ‘ - - allow - write‘ flags to
specify the allowed paths:

“‘ deno run --allow-read=/path/to/directory --allow-write=/path/to/directory
main.ts “‘

To further enhance your application’s maintainability and organization,
establish a clear separation of concerns within your codebase. This allows
for easy identification of where the third - party modules are integrated and
facilitates any future updates or modifications required.

For instance, you can create a dedicated directory (e.g., ‘integrations‘) to
store all the files related to third - party integrations. This structure ensures
that the integration logic is decoupled from your application’s core business
logic. Moreover, making use of the adapter pattern can aid in creating a
consistent interface between your application and the third - party modules.

Ensuring that the third-party modules align with your Deno application’s
architecture may also entail configuring the ‘tsconfig.json‘ file, as some
modules might be built with different TypeScript settings compared to your
application. In such cases, meticulously review the third - party module’s
documentation to grasp the proper configuration settings required.

As you move forward with integrating third - party modules into your
Deno application architecture, keep in mind the importance of code quality,
optimization, and secure coding practices. One integral aspect of maintaining
a high - quality codebase is staying up - to - date with potential updates and
enhancements to the third -party modules you’ve integrated. Monitor major
and minor releases for security patches or performance improvements that
may impact your application. Additionally, ensure that the third - party
modules you employ complement the Deno ecosystem’s growth and align
with its core design principles.

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 218

Addressing Performance and Security Concerns with
Third - Party Modules

Understanding the potential performance bottlenecks of third-party modules
is crucial in maintaining a responsive and efficient application. Module
developers might not be fully aware of your application’s complete context,
leading to underoptimized or redundant code that unnecessarily increases
execution time and resource consumption. Before incorporating any third -
party modules, thorough analysis and profiling are essential to prevent these
issues.

The first step in optimizing performance is gaining an in - depth un-
derstanding of the third - party module’s internal workings. Analyzing
the module’s profiling data and benchmark statistics will provide valuable
information about how the package performs under real - world conditions.
Alongside this data, understanding the module’s architecture, design pat-
terns, and implementation will give insight into potential bottlenecks and
optimization opportunities.

One particularly common problem with third - party modules is the
presence of unused code or ”dead code.” This code not only increases bundle
sizes but also consumes resources during runtime. Tools like tree-shaking and
code splitting can effectively eliminate these issues. Tree - shaking analyzes
the application’s dependencies and optimizes bundle sizes by removing any
unused code, while code splitting allows loading specific components or
modules only when needed, dramatically reducing the initial load time of
your application.

Third-party modules’ performance concerns also include the proper usage
of asynchronous programming patterns. Deno’s fundamental asynchronous
nature requires adequate handling of promises, async - await constructs, and
other concurrency patterns. Some third - party modules may not provide
optimal implementations, resulting in slower performance and degraded user
experiences. Identifying issues related to inefficient concurrency handling in
third - party modules and implementing suitable optimization techniques
tailored to your application’s requirements can help address these concerns.

Along with performance, security is another vital aspect of using third -
party modules in Deno projects. Since Deno applications inherently have
fewer security concerns due to its permission - based security model, extra

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 219

precautions should be taken to ensure that third - party modules do not
inadvertently introduce vulnerabilities.

As with performance optimization, understanding the inner workings and
dependencies of a third - party module is crucial when auditing its security.
Analyzing the module’s source code and scrutinizing its dependencies can
help identify potential risks. A vulnerability in one of the dependent packages
can propagate to your application, so understanding the entire dependency
tree is essential.

Another crucial aspect of ensuring security with third - party modules
is sandboxing or isolating the module’s execution environment. Deno’s
permission model and runtime flags can effectively limit the access and
functionality of third-party modules. By carefully reviewing and configuring
the necessary permissions of the module, you protect your application from
potential security leaks.

Suppose a module requires access to specific resources, such as a file
or a network connection. In that case, it is highly recommended to create
a ”security middleware” that proxies access to these resources, thereby
providing an additional layer of security and control. This middleware can
enforce validations or implement specific security policies based on your
requirements.

Finally, well - maintained and regularly updated modules pose fewer
security risks. Regularly auditing and updating the third - party modules
using security tools helps ensure the up - to - date and secure status of these
modules. Investing in continuous security monitoring will pay dividends in
the long run, protecting your application and its users from potential risks.

In conclusion, third - party modules play a significant role in the develop-
ment and scaling of Deno applications. However, performance and security
concerns arise along with these modules and must be proactively addressed
throughout the application lifecycle. By understanding the modules’ inner
workings, optimizing their usage, and implementing strong security prac-
tices, developers can enjoy the benefits of third - party modules without
jeopardizing the performance or security of their applications. As we move
forward in the evolving world of Deno and TypeScript, future developments
in the ecosystem and tooling promise to further strengthen the crate’s safety
and performance, ensuring the success of the ever - growing community of
Deno developers.

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 220

Commonly Used Third - Party Modules in Deno Appli-
cations

One of the most widely adopted modules is ‘oak‘, a middleware framework
for Deno’s HTTP server inspired by Koa and Express in the Node.js realm.
Oak provides a sleek, lightweight abstraction layer for creating, handling,
and composing server - side middleware, allowing for clean and modular code
organization. Its minimalist design promotes maximum flexibility, making
it well - suited for a variety of applications ranging from REST APIs to full -
fledged web applications.

Another crowd favorite is ‘djwt‘, a third - party module designed to
work with JSON Web Tokens (JWT) in Deno. JWTs are an essential
part of modern web applications, allowing for secure communication and
granting access to protected resources. With djwt, you can easily create,
parse, and verify JWTs. This feature - rich module supports various signing
and verification algorithms, enables custom payload claims, and offers full
compatibility with the JWT standard.

For database connectivity, developers can turn to ‘denodb‘, a comprehen-
sive Object - Relational Mapping (ORM) library for Deno. Denodb offers a
friendly, high- level API for connecting to popular databases such as MySQL,
PostgreSQL, and SQLite. The library abstracts away SQL complexities,
allowing developers to write clean, expressive code for their database inter-
actions. Denodb features include query builder support, model relationships,
migrations, transformers, and even logging capabilities.

In the realm of web scraping, the ‘deno dom‘ module has emerged as a
prominent solution, providing Deno with a DOM implementation inspired
by the W3C DOM specification. Whether you’re building a web content
extraction tool or simply working with HTML markup, deno dom helps
simplify the process by offering a familiar API for navigating, manipulating,
and querying HTML content directly in your Deno applications using the
platform’s native capabilities.

Another notable module is ‘dinatra‘, a Sinatra-inspired micro-framework
tailored for Deno developers seeking minimalism and simplicity when crafting
their server-side applications. Dinatra aims to provide just the right amount
of abstraction over Deno’s HTTP server, offering essential routing, static
file serving, and response formatting utilities. It’s perfect for small - scale

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 221

applications and prototypes where flexibility is the key focus.
‘deno - uuid‘, as the name suggests, is a highly popular module for

generating universally unique identifiers (UUIDs) in your Deno applications.
UUIDs find use in various contexts, from session management and caching
to distributed systems and database primary keys. The deno - uuid module
supports all UUID versions and follows RFC4122, ensuring compliance with
industry standards.

Developers seeking powerful and idiomatic logging capabilities should
look no further than ‘loggerr‘. This feature - packed logging library brings
severity-based log filtering, customizable formatting, and a pluggable output
system to your Deno projects. With loggerr, you gain full control of every
aspect of logging, making it easy to conform to your organization’s particular
logging requirements.

These third - party modules represent just a glimpse into the vast Deno
ecosystem, and their diverse capabilities demonstrate the immense potential
of this growing platform. As a Deno developer, you’re at the bleeding
edge of JavaScript and TypeScript innovation, poised to craft better web
applications unburdened by legacy constraints.

As we continue our journey through the Deno ecosystem, we’ll explore
more modules and delve deeper into their particularities, ensuring you can
embrace Deno’s full potential. Let us continue our exploration of Deno’s
wonders, discovering its hidden gems and mastering the skillful art of web
application development in this modern runtime environment.

Updating and Maintaining Third - Party Modules in
Deno Projects

To begin with, it is essential to keep track of the versions you are using for
each of the third - party modules leveraged in your project. Deno makes this
task relatively straightforward by mandating the explicit declaration of the
complete module URLs - including their version number - while importing
them into your application. This mechanism carves a path for more direct
version management since dependencies are ultimately tied to URLs and
are locked at the time of import.

Nonetheless, updating third-party modules in Deno projects still requires
significant attention to detail. Let us explore a practical example to illustrate

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 222

the process. Imagine you are using a Deno module, ”example module,” at
version 1.0.0 in your application, imported using the following code:

“‘typescript import { foo } from ”https://deno.land/x/example module@1.0.0/mod.ts”;
“‘

Upon discovering a newer version, say 1.1.0, which provides perfor-
mance improvements or new features relevant to your project, you decide
to upgrade.

Start by changing the import statement to reflect the new version:
“‘typescript import { foo } from ”https://deno.land/x/example module@1.1.0/mod.ts”;

“‘
Following this update, you must scrutinize the release notes or changelog

of the newly adopted version. This step is crucial to understanding any
potential breaking changes, deprecated functionalities, or updated APIs.
Afterward, examine your codebase and modify any usages of the module’s
functions, classes, or types in accordance with the discovered changes.
Subsequently, you should run your test suite to mitigate the risk of potential
unforeseen consequences or compatibility issues introduced by the new
version. In case your application does not have a comprehensive test suite,
now might be the best time to write one.

However, as Deno projects grow in size and complexity, manual updates
of third - party modules might become increasingly time - consuming and
error -prone. Thus, automating the update process becomes highly desirable.
Enter tools like deno - check - updates, which help you identify outdated
dependencies and apply available updates. Integrating such tools into your
project workflow would streamline your dependency management, making
the process more sustainable.

It is noteworthy that updating third-party modules in Deno projects may
also involve dealing with transitive dependencies - a module’s dependencies
imported by other modules in your application. Transitive dependencies
complicate the update process since they may precede breaking changes to
the parent module or, worst - case scenario, introduce conflicting versions in
your project. As a result, vigilance in reviewing both direct and indirect
dependencies becomes paramount.

Lastly, remember that frequent iteration and continuous improvement
of your codebase should be the norm, not the exception. As third - party
modules evolve alongside advancing technologies and changing requirements,

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 223

it is essential to ensure that your application stays compatible with the latest
updates. Implementing robust dependency management practices helps
guarantee that your application remains secure, performant, and continues
to deliver maximum value over time.

Embrace a progressive mindset, and strive to maintain an up - to - date
Deno project to ensure that your applications are robust, performant, and
secure. By doing so, you optimize the overall user experience and contribute
to the growth and development of the Deno ecosystem, paving the way
towards a vibrant and thriving future for Deno - based applications. Armed
with this power comes next the exploration of testing strategies and best
practices to increase reliability and confidence in Deno applications. Stay
the course and experience the trials and tribulations of intermingling Deno
and the ideals of quality assurance.

Troubleshooting Common Issues with Third - Party
Modules in Deno

One common issue that arises when working with third - party modules is
unexpected runtime errors. These errors can be caused by various factors,
such as version incompatibilities, misconfiguration, or missing dependen-
cies. To troubleshoot these errors, start by inspecting the stack trace and
narrowing down the error’s origin. If the issue stems from a third - party
module, consult its documentation and GitHub repository to explore pos-
sible solutions, known bugs, or recent changes that could be causing the
problem.

Another common challenge faced by developers is dealing with depen-
dency conflicts. With numerous third -party modules in a single application,
there may be instances where two or more modules have conflicting depen-
dencies on another module. In such cases, consider using a different version
of the conflicting module or finding an alternative module that better suits
the application’s needs. Deno’s support for import maps can also be used
to resolve dependency conflicts by specifying which version or instance of a
module should be used when importing it.

TypeScript types and interfaces are often a stumbling block when inte-
grating third - party modules into Deno applications. Third - party modules
may come with incomplete, outdated, or even missing type definitions. To

CHAPTER 11. UTILIZING THIRD - PARTY MODULES IN DENO PROJECTS 224

overcome this challenge, use the ‘ - - no - check‘ flag during development
to avoid type - checking or create custom type definitions for the module.
Additionally, keep in mind that the Deno community frequently maintains
separate type definition repositories for popular third -party modules, which
can be a valuable resource when facing type - related issues.

Performance degradation can also result from using third-party modules,
especially when using multiple heavy libraries. To identify performance
bottlenecks, profile the application using Deno’s built - in profiling tools or
third - party profiling libraries. Once the problematic modules have been
identified, evaluate whether their functionality is essential to the application.
If not, consider removing the module or replacing it with a more performant
alternative. Additionally, consult the module’s documentation to identify
potential performance optimizations or best practices.

Security vulnerabilities are a crucial concern when using third - party
modules. It’s essential to be vigilant about potential security risks associated
with a module’s code or its dependencies. Regularly review and audit the
modules your application relies on to ensure they follow best practices and
use the built - in Deno security features effectively. Additionally, it’s vital to
stay informed about any updates or patches to third - party modules that
address discovered security vulnerabilities.

Chapter 12

Testing Strategies,
Libraries, and Best
Practices for Deno
Applications

First and foremost, it is important to become acquainted with the built - in
Deno testing API, which provides a simple yet powerful way to create tests.
The Deno test runner allows you to write, execute, and maintain unit tests
using various assertions available to verify the correct behavior of your code.
Additionally, it supports advanced features such as test filters, parallel test
execution, and more.

To start writing tests for Deno applications, it is essential to follow a
naming convention for your test files. By convention, test files should follow
the format of ‘filename test.ts‘, where ‘filename‘ corresponds to the original
file containing the code being tested. This naming convention facilitates
test discovery and allows us to easily locate the tests corresponding to a
specific file within our application.

When developing complex applications, sometimes the built - in Deno
testing functionalities may not be sufficient to cover all your testing needs.
Fortunately, several third - party testing libraries are available in the Deno
ecosystem to help fill the gaps. For example, libraries such as ‘DenoT‘ and
‘SuperDeno‘ help with advanced testing features like test case generators,
mocking and stubbing.

225

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

226

In large - scale Deno projects, it is paramount to invest in testing in-
frastructure that simplifies test management and offers better control over
the testing environment. For instance, you may benefit from adopting a
test harness capable of setting up and tearing down resources, fixtures, and
shared state before and after running your test suites.

Integration testing becomes essential when your application depends
on various components, services, or external resources. When writing
integration tests, remember to keep them isolated from unit tests. Deno’s
built - in testing API lets you write integration tests alongside unit tests,
but it is still crucial to separate them logically - and even physically, when
necessary - to ensure a clear distinction between the types of tests you’re
running.

To encourage a Test - Driven Development (TDD) approach, consider
using testing libraries that provide watch mode capabilities. By continuously
running tests as you make code changes, you can quickly detect and fix
issues during the development phase without having to switch between the
terminal and your code editor manually.

To ensure the consistent quality of your codebase, it’s important to inte-
grate your tests with Continuous Integration (CI) systems such as GitHub
Actions, GitLab CI/CD, or CircleCI. These services can automatically build,
test, and deploy your code whenever changes are pushed to the reposi-
tory. Integrating with CI helps ensure that your tests are continuously
executed and that the entire team is committed to maintaining a high -
quality codebase.

While writing tests, don’t forget to adhere to the best practices specific
to TypeScript and Deno. For example, using TypeScript type guards and
interfaces can help with input validation and ensure that your codebase
remains maintainable and type - safe.

In conclusion, taking a proactive, thoughtful, and innovative approach to
testing is vital to the long - term success of your Deno applications. As you
venture into the diverse landscape of Deno and TypeScript and continue
to build expressive and reliable applications, make sure to always keep
your test suite up - to - date and lean on the state - of - the - art testing
tools and strategies poised to ensure that your applications are dependable,
performant, and most importantly, delightful to use.

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

227

Introduction to Testing in Deno Applications

As a developer, you undoubtedly appreciate testing’s significance in deliver-
ing a high-quality product. When we venture into the realm of Deno, we are
greeted by essential built - in tools such as ‘Deno.test()‘ and a collection of
assertion functions that allow us to write robust tests with just the standard
Deno runtime.

Let’s begin with a simple example, assuming you’re building a Deno
module for basic arithmetic operations. Consider the following ‘add‘ function
in ‘math.ts‘:

“‘ts function add(a: number, b: number): number { return a + b; }
export { add }; “‘
To write a test for this ‘add‘ function, create a file named ‘math test.ts‘

and import the ‘Deno.test‘ function along with ‘add‘ function:
“‘ts import { add } from ”./math.ts”; import { assertEquals } from

”https://deno.land/std@0.107.0/testing/asserts.ts”;
Deno.test(”add function”, () => { const result = add(2, 3); assertE-

quals(result, 5); }); “‘
In this example, we’ve named the test ”add function” and provided

a test function that asserts the correctness of the ‘add‘ function. The
‘assertEquals‘ function is imported from Deno’s standard testing library,
which provides a suite of useful assertion functions for your convenience.
Should the test be incorrect, you will receive a clear error message that
pinpoints the discrepancy.

To run the test, execute the following command:
“‘sh deno test math test.ts “‘
Deno will scan the file and execute all tests. You should see a concise

report indicating the test’s success or failure, along with the time taken and
the number of tests executed. This straightforward workflow allows you to
focus on writing and expanding your test suite with minimal friction.

As developers, we aim for a high level of confidence in our applications’
functionality. Therefore, it’s crucial to keep in mind the ease of testing,
especially mocking and stubbing dependencies when writing tests. Deno’s
first - class support for ES modules facilitates mocking module imports
effortlessly. By replacing the import path with the path to your mock
module, you can create a controlled environment for your tests.

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

228

Consider this example of a Deno module that fetches data from a REST
API:

“‘ts // api.ts export async function fetchData(url: string): Promise<any>

{ const response = await fetch(url); return await response.json(); }
// api test.ts import { fetchData } from ”./api.ts”; import { assertEquals

} from ”https://deno.land/std@0.107.0/testing/asserts.ts”;
Deno.test(”fetchData”, async () => { const result = await fetch-

Data(”https://api.example.com/data”); assertEquals(result, { value: 42 });
}); “‘

The above test is insufficient, as ‘fetchData‘ could be unreliable due to
external factors such as network issues or changes in the API. Consequently,
your test suite would be fragile. To avoid this, you can create a mock module
for ‘fetch‘:

“‘ts // mock fetch.ts export function fetch(url: string): Promise<response>

{ return Promise.resolve(new Response(JSON.stringify({ value: 42 }))); }
// api test.ts import { fetchData } from ”./api.ts”; import { assertEquals

} from ”https://deno.land/std@0.107.0/testing/asserts.ts”; import { fetch }
from ”./mock fetch.ts”;

(globalThis as any).fetch = fetch;
Deno.test(”fetchData”, async () => { const result = await fetch-

Data(”https://api.example.com/data”); assertEquals(result, { value: 42 });
}); “‘

This example demonstrates how simple it is to replace dependencies
with the power of ES modules and Deno’s global scope. Moreover, the Deno
community boasts a multitude of third - party libraries to assist in mocking
and stubbing dependencies, taking your confidence in your tests to even
greater heights.

Inevitably, with a substantial application, the number of tests grows
exponentially, and managing them efficiently becomes a challenge. Deno
shines in this area as well; you can run a subset of tests simply by providing
their names or utilizing regular expressions. Furthermore, Deno’s support
for JavaScript’s built - in test runner, like Jest, means that you can employ
advanced testing techniques such as parallel test execution and interactive
watch modes.

In conclusion, a meticulously crafted suite of tests is an indispensable
companion to any application. Deno, with its elegant framework, integrated

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

229

testing facilities, and TypeScript prowess, fuels the creation of highly reliable
and maintainable code. The road to a sterling codebase may be long, but
the alluring features of Deno beckon us, promising an exhilarating journey
that traverses the panorama of web development in the modern era. As
you continue your excursion through the Deno and TypeScript landscape,
you will unearth more secrets and charms that warrant exploration with
unbridled zeal.</response></any>

Built - in Deno Testing Framework and Assertions

Testing is an essential aspect of modern software development processes.
It allows developers to validate their code’s functionality, discover regres-
sions, and ensure code quality. As a programming platform, Deno places a
significant emphasis on offering a built - in testing framework and various
assertion utilities to enable developers to efficiently write and manage tests
within their TypeScript applications.

One of the major strengths of the Deno built - in testing framework is
that it facilitates the creation, organization, and execution of tests without
the need for any additional third - party libraries or tools. To use the Deno
testing utilities, developers simply need to import the ‘test‘ function and
various assert functions to get started. The following is a basic example of
how you would define a test in Deno:

“‘typescript import { test, assertEquals } from ”https://deno.land/std/testing/mod.ts”;
test(”My first Deno test”, () => { assertEquals(1, 1, ”1 is equal to

1”); }); “‘
In this example, the ‘test‘ function is used to define a new test case,

assigning it a name (”My first Deno test”) and a function that contains the
actual test code. Inside the test code, the ‘assertEquals‘ function is called
with three arguments, two values to be compared, and an optional (but
recommended) message for clarity. The test simply asserts that the number
1 is equal to 1. Running this test file with the Deno test command (‘deno
test‘), will display the test results, indicating whether the test has passed or
failed.

Deno’s built - in assertion functions provide a wide variety of capabilities
for validating test results. Besides ‘assertEquals‘, some other commonly
used assertions include:

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

230

- ‘assertStrictEquals‘: Validates that two values are strictly equal (i.e.,
have the same value and type). - ‘assertNotEquals‘: Ensures that two
values are not equal in value. - ‘assertArrayIncludes‘: Asserts that an array
contains a specific element. - ‘assertObjectMatch‘: Verifies that an object’s
properties match the properties of another object (shallow comparison).

Using these assertion functions, developers can build robust tests to
validate a wide range of application behaviors and characteristics.

Organizing and naming tests in Deno is straightforward using the nested
‘describe‘ and ‘it‘ functions. This allows developers to structure their tests
hierarchically, which eases navigation and enhances readability. Here’s an
example of how a test suite resembling a Jest or Mocha test might look in
Deno:

“‘typescript import { assertEquals, describe, it, } from ”https://deno.land/std/testing/mod.ts”;
import { calculateSum } from ”./math.ts”;

describe(”Math module”, () => { it(”calculateSum function”, ()
=> { const result = calculateSum(1, 1); assertEquals(result, 2, ”The
sum of 1 and 1 is 2”); }); }); “‘

Materializing the test suite using this structure not only offers better
test organization but also enhances the reporting capabilities and overall
readability.

Deno also enables developers to run tests with a variety of options and
configurations. For instance, developers can execute a specific subset of
tests by specifying a pattern to match test names. This enables running
only the tests that match the given pattern, significantly streamlining the
testing process.

“‘sh $ deno test - - filter=’Math module’ “‘
Finally, it’s worth mentioning that Deno also provides a continuous

testing feature known as ”watch mode.” When running tests with the ‘ - -
watch‘ flag, Deno monitors the project for file changes and automatically re
- runs the tests whenever a file is modified.

“‘sh $ deno test - - watch “‘
This significantly speeds up the feedback loop when writing tests, making

the overall testing process more efficient and enjoyable for developers.
In conclusion, Deno’s built - in testing framework is a powerful tool for

writing and maintaining reliable TypeScript applications. By offering a rich
set of assertion utilities and operational options, along with a natural and

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

231

pragmatic test organization, Deno allows developers to write robust and well
- structured tests that ensure code quality and functionality. With a strong
foundation in place for testing, developers can confidently build and deploy
scalable Deno applications while minimizing bugs and future regressions.

Organizing and Naming Conventions for Test Files

Let us begin by considering a typical Deno project structure. Assuming we
are developing a REST API, the basic project skeleton may look like this:

“‘ src/ controllers/ middlewares/ models/ routes/ index.ts tests/ con-
trollers/ middlewares/ models/ routes/ config/ utils/ deps.ts mod.ts “‘

With a well - organized project structure, tests should be kept separate
from the source files. As seen in the example above, we have a dedicated
‘tests‘ directory that mirrors the ‘src‘ directory, with separate folders for
different components of the application such as controllers, middlewares,
models, and routes. The separation of tests and source files avoids clutter
and allows for easy navigation in larger projects.

For naming conventions in test files, it is essential to adopt a standard
approach that is descriptive and immediately recognizable as a test file. One
widely accepted practice is to append ” test” to the name of the file being
tested. For instance, if we have a file called ‘userController.ts‘, the associated
test file should be named ‘userController test.ts‘. This convention enables
developers to quickly identify test files and draw connections between the
file being tested and its test code.

Another principle to follow while structuring test files is to enforce
separation of concerns. Test files should be focused on testing specific
sections or functionalities of the application. For example, if we have a
UserController, all test cases related to user creation should be grouped
together in a separate “describe” block within the userController test.ts file:

“‘typescript // userController test.ts import { createUserController }
from ”../../src/controllers/userController.ts”; import { assertEquals } from
”https://deno.land/std/testing/asserts.ts”;

Deno.test({ name: ”User Controller Test Suite”, async testFn() { de-
scribe(’User Creation Tests’, () => { // Test cases for user creation
});

describe(’User Retrieval Tests’, () => { // Test cases for user retrieval

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

232

});
// additional test blocks } }); “‘
In the example above, we are using Deno’s built - in test framework to

create a test suite for the UserController. Within the suite, we logically
group test cases in ”describe” blocks, each of which focuses on a specific
aspect of the controller.

This hierarchical structure with clear separation of concerns not only
promotes a well - maintained test environment, but also simplifies the
developer experience when writing and navigating through test cases in
large applications.

While working with test files, it is also important to maintain a clear
description of test cases. Developers should be able to comprehend the
intent of the test just by reading its description. Test case names should
convey the following: 1. The scope and responsibility of the component
being tested. 2. The expected behavior and outcome of the test. 3. Relevant
input or context information.

An example of a well written test case description could be: ”Given a
valid user object, the createUserController should return a new user ID and
a 201 Created status.”

Organizing and naming test files effectively can expedite the development
process, help prevent errors, and reduce the cognitive load experienced by
developers. As the application scales, it becomes even more critical to
maintain a solid test organization strategy. Thoughtfully organized and
named tests give rise to a productive environment, ultimately leading to
better code quality and more reliable applications.

Writing Unit Tests for Deno Modules with TypeScript

Unit testing is a software testing methodology that emphasizes the impor-
tance of verifying individual units of a codebase, where a unit can be any
small piece of code, such as a function or a class, that operates in isolation.
When testing these units, we aim to cover a wide array of potential use
cases, inputs, and edge cases to detect any hidden issues that might cause
the code to behave unexpectedly. With the advent of TypeScript and Deno,
we can harness both type - safety and native testing features to take our
unit testing capabilities a step further.

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

233

Let’s start by taking a look at the basic structure of a Deno test. As part
of Deno’s built - in testing framework, we have two main elements to work
with: the ‘Deno.test‘ function and the assertion functions available from
‘Deno.asserts‘. To illustrate the usage of these components, let’s consider
an example module named ‘helloMod.ts‘ that exports a simple function as
follows:

“‘typescript // helloMod.ts export function greet(name: string): string
{ return ‘Hello, ${name}‘; } “‘

Now, we can create a separate test file ‘helloMod test.ts‘ to write our
unit test. Here, we import the function under test and define our test case
using ‘Deno.test‘:

“‘typescript // helloMod test.ts import { greet } from ”./helloMod.ts”;
import { assertEquals } from ”https://deno.land/std/testing/asserts.ts”;

Deno.test(”Greet function returns the correct greeting”, () => { const
result = greet(”Deno”); assertEquals(result, ”Hello, Deno”); }); “‘

In the code snippet above, we define our test case with a descriptive
name and test body, where we call the function ‘greet‘ with the ”Deno”
argument and use the ‘assertEquals‘ assertion function to verify that the
returned result matches our expectations. To run our test suite, we need to
execute ‘deno test‘ in the terminal, and Deno will automatically discover
and run all test cases in our codebase, providing a clear output of the test
results.

One of the primary benefits of adopting TypeScript in our Deno appli-
cations is the ability to define precise and expressive types. This advantage
extends to our unit tests, where we can use these types to catch any incon-
sistencies within our testing code, ensuring that we are always dealing with
the expected data structures and values.

For instance, let’s assume that our ‘greet‘ function needed to accept an
additional ‘title‘ parameter as an optional string. We would first update
the function definition as follows:

“‘typescript // helloMod.ts export function greet(name: string, title?:
string): string { return ‘Hello, ${title ? title + ” ” : ””}${name}‘; } “‘

When we update our test case to include this new functionality, Type-
Script’s type system will ensure that we pass the right arguments with the
correct types, preventing any issues stemming from incorrect test code:

“‘typescript // helloMod test.ts Deno.test(”Greet function includes op-

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

234

tional title”, () => { const result = greet(”Deno”, ”Master”); assertE-
quals(result, ”Hello, Master Deno”); }); “‘

Furthermore, we can leverage powerful TypeScript features such as
mapped types, conditional types, and keyof types to make our unit tests
more extensible and dynamic, eliminating duplicative or hard - to - maintain
code. For advanced scenarios, we can also employ custom type guards and
assertion functions to validate the input data and ensure that our tests only
accept valid states.

When writing unit tests for Deno modules, it is essential to keep in
mind that each test should focus on one specific functionality or behavior
and avoid any dependencies between test cases to minimize the risk of
introducing erroneous or convoluted results. Furthermore, consider applying
the Principle of Least Astonishment to your test cases by naming them
descriptively, organizing them logically, and refactoring shared logic into
utility functions to enhance readability and maintainability.

As we continue on this journey towards mastering Deno, incorporating
a thorough and thoughtful unit testing strategy is a key aspect of ensuring
long - term success and sustainability in our projects. We’ll elevate this
understanding even further as we explore more advanced topics, innovative
techniques, and powerful Deno features to help build the foundation of a
truly remarkable and robust application.

Mocking and Stubbing Dependencies in Deno Tests

We begin by differentiating between mocking and stubbing. Mocking in-
volves creating a fake version of an object or function to replace the real
implementation during testing, enabling you to assert that it was called
with the right arguments and returned the right values. Stubbing, on the
other hand, involves replacing only a portion of an object or function while
leaving the rest of the implementation unchanged. Despite their differences,
both mocking and stubbing are valuable tools to isolate units of code and
manage edge cases during testing.

Let us start by exploring a common testing scenario: testing a function
that interacts with an external API. The function, ‘fetchData‘, makes a
call to an API using Deno’s ‘fetch‘ function and returns the parsed JSON
data. In a unit test, we do not want to make an actual API call as it would

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

235

lead to a slow and brittle test. Instead, we can mock the ‘fetch‘ function,
allowing us to control the response and keep the test focused on the logic
within ‘fetchData‘.

Consider the following code snippet:
“‘typescript // data fetcher.ts export async function fetchData(apiUrl:

string): Promise<any> { const response = await fetch(apiUrl); const data
= await response.json(); return data; } “‘

To mock the ‘fetch‘ function, we could use a Deno - supported third -
party library such as ‘mock‘, which provides an elegant way to create and
manage mock objects.

“‘typescript // deps.ts export { createMock, releaseMock, resetMocks, }
from ”https://deno.land/x/mock/mod.ts”; “‘

Using the ‘createMock‘ function, we craft a mocked version of ‘fetch‘
that returns a controlled response.

“‘typescript // data fetcher.test.ts import { assertEquals } from ”../test-
ing/asserts.ts”; import { fetchData } from ”./data fetcher.ts”; import {
createMock, releaseMock } from ”../deps.ts”;

Deno.test(”fetchData returns parsed JSON data”, async () => {
const expectedData = { foo: ”bar” };

const fetchMock = createMock(Deno, ”fetch”, async function (apiUrl:
string) { return new Response(JSON.stringify(expectedData), { status: 200
}); });

const data = await fetchData(”https://example.com/api/data”); as-
sertEquals(data, expectedData);

releaseMock(fetchMock); }); “‘
In the test case, ‘createMock‘ replaces the global ‘fetch‘ function with our

custom implementation. When ‘fetchData‘ is called, the mocked version of
‘fetch‘ generates a controlled response, and we can assert that the returned
data matches our expectations. The ‘releaseMock‘ function is used to remove
the mock, ensuring that subsequent tests are unaffected by our changes.

Now, let’s look at a scenario where stubbing is more effective. Imagine
having a function, ‘saveData‘, which validates incoming data and calls
another function, ‘storeData‘, to persist it. We are only interested in testing
the input validation logic of ‘saveData‘ and would like to avoid invoking
‘storeData‘ during the test.

“‘typescript // data saver.ts export function storeData(data: any):

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

236

boolean { // Implementation to store data and return a status }
export function saveData(data: any): boolean { if (dataIsValid(data)) {

return storeData(data); }
return false; } “‘
We can use the ‘Sinon‘ library, another popular Deno-compatible library,

to create stubs. First, we import the necessary functions from the library:
“‘typescript // deps.ts export { createStub, releaseStub, } from ”https://deno.land/x/sinon/mod.ts”;

“‘
Next, we create a stub for the ‘storeData‘ function, effectively neutralizing

its implementation during our test.
“‘typescript // data saver.test.ts import { assert } from ”../testing/asserts.ts”;

import { saveData, storeData } from ”./data saver.ts”; import { createStub,
releaseStub } from ”../deps.ts”;

Deno.test(”saveData returns false for invalid data”, () => { const
storeDataStub = createStub(storeData).returns(false);

const isValid = saveData({ invalid: ”data” }); assert(!isValid);
releaseStub(storeDataStub); }); “‘
The ‘createStub‘ function is used to replace the ‘storeData‘ function

with a stub that returns ‘false‘. This way, the test focuses solely on the
validation logic of ‘saveData‘. The ‘releaseStub‘ function ensures that the
function is restored to its original state after the test is complete.

Mastering the art of mocking and stubbing dependencies in your Deno
tests will equip you with powerful tools to craft effective unit tests while
isolating your code from external dependencies and side effects. This
newfound knowledge will serve as a key asset when exploring the fascinating
realm of testing strategies and practices in your Deno projects. As we
journey further, we will delve into more advanced topics, such as continuous
integration and deployment, enhancing your understanding of the art of
Deno development.</any>

Leveraging Third - Party Testing Libraries for Advanced
Testing

As we dive into the world of testing our Deno applications, we might find
ourselves pushing the boundaries of the built - in Deno testing framework.
While it is a great starting point for most application testing needs, there

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

237

can be cases where we require more advanced features and functionalities.
To cater to these advanced requirements, it is essential to leverage third -
party testing libraries for our Deno applications.

To begin our exploration, let’s consider the Rhum testing library. Rhum
is a simple yet powerful testing framework designed to work seamlessly
with Deno applications. Rhum places emphasis on readability, ease of use,
and compatibility with the Deno ecosystem. The ”Rhum” name takes
inspiration from both ”RSpec” and ”Mocha,” which are popular ruby and
Node.js testing tools, respectively.

Installing Rhum in your Deno project is straightforward as it can be
imported directly as a module. To get started, let’s create a file named
‘deps.ts‘ and include the following import statement:

“‘typescript // deps.ts export { Rhum } from ”https://deno.land/x/rhum/mod.ts”;
“‘

Now, let’s create a test file located at ‘tests/sample.test.ts‘ and import
the Rhum module from our dependencies file:

“‘typescript // tests/sample.test.ts import { Rhum } from ”../deps.ts”;
Rhum.testPlan(”sample.test.ts”, () => { Rhum.testSuite(”Rhum

example suite”, () => { Rhum.testCase(”Add function”, () => {
const sum = 1 + 1; Rhum.asserts.assertEquals(sum, 2); }); }); });

await Rhum.run(); “‘
To run our test, simply execute the following command:
“‘ deno test - - allow - read - - allow - net - - unstable “‘
In this example, we can see that Rhum offers a friendly DSL (Domain

- Specific Language) that allows engineers to write expressive, human -
readable tests. It provides an easy - to - understand test structure through
test plans, test suites, and test cases. Additionally, Rhum provides a set
of assertion methods that can be utilized for various situations during our
testing process.

Now, let’s dive deeper into a more advanced use - case by discussing
how we can integrate Rhum with a mocking library named ”DenoMock.”
DenoMock offers various functionalities to mock functions, classes, and
modules in Deno applications.

For instance, let’s consider a simple function that calculates the total
price of an electronic device, including value - added tax (VAT):

“‘typescript // calculator.ts export function calculateTotalPrice(price:

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

238

number, vatPercentage: number): number { return price + (price * vatPer-
centage) / 100; } “‘

To test the ‘calculateTotalPrice‘ function thoroughly, we might need to
test various edge cases and different data conditions. While the combination
of Rhum and Deno’s built - in testing capabilities offers a solid foundation,
DenoMock can take us even further by providing a way to control the return
values of our function calls.

Let’s suppose that we’ve imported a module named ”VATProvider” in
our ‘calculateTotalPrice‘ function, which fetches accurate VAT rates for
different countries. To test the function’s behavior with different VAT rates,
we can utilize DenoMock to replace the actual VATProvider module with
a mock implementation that generates different VAT rates for our test
scenarios.

For this purpose, we would first create a file named ‘deps.ts‘ and include
the import statement for DenoMock:

“‘typescript // deps.ts export { Mock } from ”https://deno.land/x/mock/mod.ts”;
“‘

Once DenoMock is imported, we can leverage its powerful mocking
capabilities in combination with Rhum to write advanced test scenarios for
our ‘calculateTotalPrice‘ function.

In conclusion, third - party testing libraries like Rhum and DenoMock
enable a more advanced and flexible testing experience for Deno applications.
By embracing these powerful libraries and harnessing their full potential,
we can elevate our testing game to new heights and ensure that our Deno
applications stay reliable, robust, and secure throughout their lifecycles.
As we further explore the Deno ecosystem and its expanding set of quality
libraries and frameworks, we will continuously discover new ways to bolster
the testing process and deliver high - quality software solutions. With the
solid foundation laid by the built - in Deno testing framework, combined
with the versatility offered by third - party libraries, we are well equipped to
tackle even the most complex testing scenarios with confidence and ease.

Implementing Integration Tests for Deno Applications

First, let’s discuss why integration testing is essential for Deno applications.
While unit tests prove that individual modules and functions behave correctly

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

239

in isolation, integration tests validate that the application as a whole operates
as expected. These higher - level tests ensure that the various modules
within a Deno application seamlessly interact with each other, exposing any
unforeseen edge cases and bugs that may arise during serialization, network
calls, or any other form of communication between components. With the
understanding of the importance of integration testing, let’s explore some
strategies for effectively implementing these tests in a Deno application.

1. Test doubles: When writing integration tests for Deno applications,
it’s essential to utilize test doubles, such as mock objects or stubs, to simulate
the behavior of external dependencies. For example, a Deno application
might interact with a database or consume an external API. In such cases,
it is beneficial to mock the external dependency to ensure the test focuses
on the application’s behavior and not the dependency. This can be achieved
using libraries such as ‘deno-mock‘ or by employing Deno’s built- in mocking
capabilities.

Example:
“‘typescript import { assertEquals } from ”https://deno.land/std/testing/asserts.ts”;

import { getUsers } from ”./users.ts”; import { FakeDatabase } from ”./fake-
Database.ts”;

// Use the test double in place of the real database. const testDatabase
= new FakeDatabase();

// Patch the database interaction with the test double. const original-
Database = getUsers.database; getUsers.database = testDatabase;

Deno.test(”integration test: getUsers return data from database”, async
() => { // Add data to the test double. testDatabase.addUser({ id: 1,
name: ”Alice” }); testDatabase.addUser({ id: 2, name: ”Bob” });

const users = await getUsers();
// Verify that getUsers interacts properly with the database. assertE-

quals(users, [{ id: 1, name: ”Alice” }, { id: 2, name: ”Bob” },]); });
// Restore the original database interaction. getUsers.database = origi-

nalDatabase; “‘
2. Environmental isolation: When running integration tests, it’s crucial

to isolate the test environment from the production environment. This
can be achieved by using environment variables and separate configuration
files that define the settings for each environment. For example, different
database connections, API endpoints, and secret tokens should be utilized

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

240

during testing to avoid modifying the production data or triggering any
unintended side effects.

Example:
“‘typescript // Set environment variable in test script Deno.env.set(”DENO ENV”,

”test”);
// In your configuration file, use different settings depending on the

environment const isTestEnvironment = Deno.env.get(”DENO ENV”) ===
”test”; export const databaseUrl = isTestEnvironment ? ”sqlite://localhost/test.db”
: ”sqlite://localhost/production.db”; “‘

3. Testing tools: Take advantage of Deno’s built - in testing library to
simplify the process of writing and executing integration tests. The standard
testing library provides essential assertions and test runner functionality,
allowing developers to focus on writing meaningful test cases. Additionally,
consider using third - party libraries such as ‘superdeno‘ for testing HTTP
requests or ‘deno mongo‘ for database interactions.

4. Testing with real databases and services: While most integration
tests should use test doubles to simulate external dependencies, it may
also be helpful to write tests that interact with live databases and services.
For instance, this approach can help ensure that a Deno application’s
database schema is compatible with the production database. These tests
are commonly referred to as end - to - end tests and should be executed
less frequently than other types of tests due to their higher complexity and
execution time.

Test - Driven Development (TDD) for Deno Applications
with TypeScript

Let’s start by examining the process of TDD, accompanied by a real - world
example. TDD involves a repetitive cycle of writing tests first, followed by
implementing the code to satisfy the tests, and finally refactoring the code
for optimizations and maintenance. This rhythm not only helps catch errors
early in the development process but also encourages better code design
and modularity.

Picture this scenario: you are building a Deno application to handle a to
- do list, and your first task is to implement the functionality to add a new
item to the list. In the spirit of TDD, we begin by writing a test case to

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

241

check whether an item is correctly added. Using the built - in Deno testing
framework and assertions, you might start with:

“‘typescript import { assertEquals } from ”https://deno.land/std@0.118.0/testing/asserts.ts”;
import { addItemToList } from ”./todo.ts”;

Deno.test(”addItemToList”, () => { const newList = addItemToList([],
{ id: 1, description: ”Buy milk”, done: false });

assertEquals(newList, [{ id: 1, description: ”Buy milk”, done: false },
]); }); “‘

With the test in place, it’s time to write the corresponding function:
“‘typescript type TodoItem = { id: number; description: string; done:

boolean; };
export function addItemToList(list: TodoItem[], newItem: TodoItem):

TodoItem[] { return [list, newItem]; } “‘
Now, running ‘deno test‘ ensures that the test case is executed and

passing. Thanks to the use of TypeScript, the code benefits from type safety,
enhancing the reliability of the tests and code.

When practicing TDD, developers also need to keep an eye on code
coverage. While Deno does not have built - in code coverage support, it can
be achieved through external solutions, such as Istanbul. Ensuring a good
level of code coverage guarantees that the code is thoroughly tested and
resilient to regression.

In the process of TDD, refactoring is the key to continuously improving
code quality. After implementing the initial functionality, you might decide
that a more elegant approach is to separate the state management logic and
introduce a reducer function, similar to the Redux pattern. This refactoring
will not only promote code reusability but also help maintain a cleaner
architecture. Once the change is made, the existing test suite ensures that
the behavior remains correct.

TDD also shines when it comes to maintaining third-party dependencies.
By encapsulating the external code within mock or stub objects, TDD
ensures that the application only tests its logic without worrying about
the implementation of external systems. This isolation keeps the testing
environment clean and simplifies updating dependencies since the test cases
act as a safety net to catch breaking changes.

A major strength of Deno, TypeScript, and TDD as a trio is their
emphasis on security and permission management. By incorporating security

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

242

checks and permission - related assertions into the test cases, developers
not only build secure applications but also create a self - documenting
security model, improving maintainability and reducing the likelihood of
vulnerabilities.

Continuous Integration (CI) and Automated Testing
with Deno

Continuous Integration (CI) and Automated Testing are crucial aspects of
modern software development practices, enabling developers to continuously
merge and test their changes to ensure consistency, quality, and rapid
feedback. Deno, as a newer runtime environment, fully supports these
concepts and can be easily integrated into existing CI/CD pipelines.

For Deno developers, automated testing begins with Deno’s built - in
testing framework. The Deno test runner provides a simple and efficient way
to write and execute test cases. Using the ‘Deno.test‘ function, developers
can create a named test case that contains assertions to ensure their code
behaves as expected. The test runner provides numerous built - in assertion
functions, such as ‘assertEquals‘, ‘assertNotEquals‘, ‘assertStrictEquals‘, and
others, allowing developers to quickly and easily validate their application.

In addition to Deno’s built - in testing framework, there are also third -
party testing libraries available that can expand the capabilities of Deno’s
testing ecosystem. These libraries can provide advanced features such as
mocking, stubbing, and test doubles, making it easier for developers to
isolate and test individual components within their application.

Once a comprehensive suite of tests is in place, the next step is to
automate the execution of these tests by incorporating them into a CI
pipeline. Continuous Integration services like GitHub Actions, GitLab
CI/CD, and CircleCI can readily integrate with Deno. A typical CI pipeline
for a Deno application will include several steps, such as installing Deno,
checking out the source code, running the test cases, and possibly deploying
the application or a new version of a Deno module.

Let’s consider an example using GitHub Actions to demonstrate the
power of CI and automated testing for Deno applications. Suppose we have
a simple Deno application with a few test cases. First, we need to create
a GitHub Actions workflow file, called ‘.github/workflows/ci.yaml‘ in our

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

243

repository. This file will define the steps to execute our tests automatically
on every push to the repository.

“‘yaml name: Deno CI
on: push: branches: - main
jobs: test: runs - on: ubuntu - latest steps: - name: Checkout repository

uses: actions/checkout@v2
- name: Setup Deno uses: denolib/setup - deno@v2 with: deno - version:

v1.x
- name: Cache dependencies uses: actions/cache@v2 with: path: ˜/.deno

key: ${{ runner.os }} - deno - ${{ hashFiles(’**/deps.ts’) }}
- name: Run tests run: deno test - - unstable - - allow - all “‘
In this GitHub Actions workflow, we specify that the pipeline should

trigger on every push to the ‘main‘ branch. The pipeline itself contains
several steps. The first, ”Checkout repository,” is responsible for fetching the
source code from the repository. Then, the ”Setup Deno” step installs Deno
using the ‘denolib/setup - deno‘ GitHub Action, which supports specifying
the desired Deno version.

Next, we use ”Cache dependencies” to cache the dependencies of our
application (defined in a ‘deps.ts‘ file) to speed up the execution of the CI
pipeline. Finally, in the ”Run tests” step, we execute the test cases using the
‘deno test‘ command. The ‘ - - unstable‘ flag is necessary if we use unstable
Deno APIs, while the ‘ - - allow - all‘ flag provides the required permissions
to run the test cases.

With this simple pipeline in place, every time a developer pushes changes
to the ‘main‘ branch, the tests will automatically run, ensuring the integrity
of the application. Should any test fail, the pipeline execution would be
marked as failed, preventing any potential bugs from being introduced to
the project.

In conclusion, Continuous Integration and Automated Testing are es-
sential practices to establish and maintain high - quality Deno applications.
Leveraging the built - in Deno test runner and integrating it with popular
CI/CD platforms allows developers to confidently introduce new features,
refactor existing code, and minimize the introduction of bugs. By embracing
these modern development practices, Deno pioneers a new frontier in the
world of efficient and secure JavaScript and TypeScript software that can
fully realize the potential of robust CI/CD pipelines.

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

244

Best Practices and Recommendations for Testing Deno
Applications

First and foremost, adopt a pragmatic approach when testing Deno applica-
tions - always strive to strike the right balance between test coverage and
test execution time. Before diving headfirst into testing, identify the critical
components of your application that warrant comprehensive coverage and
focus your testing efforts on those. It is not necessary, nor pragmatic, to
aim for a hundred percent test coverage.

When it comes to organizing and writing tests, a modular approach is rec-
ommended. Structure your test files into folders mirroring your application’s
source code directory structure. By doing so, it becomes easier to locate
the corresponding tests for any given module, facilitating maintenance and
updates. As a general guideline, you can name your test files by appending
”.test.ts” to the original module’s filename (e.g., ‘my module.ts‘ would have
a corresponding test file named ‘my module.test.ts‘).

Another crucial aspect of testing Deno applications is utilizing stubs and
mock objects to isolate the code under test from external dependencies. By
replacing the actual implementations of functions or modules with mock
versions, you can create controlled environments for your tests, ensuring
accurate and reproducible outcomes. Deno provides a wide range of built - in
testing utilities, such as ‘Deno.create‘, ‘Deno.writeFile‘, and ‘Deno.readAll‘,
which are helpful in creating mock objects and temporary file systems.

When writing tests, it is vital to remember the importance of failure
conditions and edge cases. While it may be tempting to focus primarily
on the ”happy path”, ensuring that your code reacts appropriately to
unexpected input or erroneous conditions is equally important. Consequently,
subjecting your Deno application to a variety of test cases, both successful
and failed, can lead to increased code resilience.

Leverage third - party libraries to enhance your testing capabilities in
Deno applications. One such library, ‘superdeno‘, is a fork of the popular
Node.js testing library ‘supertest‘. It facilitates the testing of HTTP servers
without requiring an actual server by simulating HTTP requests to the
API. By incorporating these additional libraries, you can capacitate a more
thorough and automated testing process.

Do not overlook the importance of performance tests for your Deno

CHAPTER 12. TESTING STRATEGIES, LIBRARIES, AND BEST PRACTICES
FOR DENO APPLICATIONS

245

applications. With the increasing demand for web applications and APIs
to perform at high speeds, it is essential to ensure optimal performance
under various workloads. For instance, you can use tools like ‘wrk‘ or ‘auto-
cannon‘ to stress test your Deno applications, identifying any performance
bottlenecks and addressing them accordingly.

Finally, integrating a continuous integration (CI) platform into your
Deno application’s development workflow can yield significant advantages.
CI platforms automate the execution of tests whenever code is pushed to
the repository, keeping your application’s codebase stable and ensuring
that defects are quickly identified and addressed. Several CI platforms
are compatible with Deno, such as GitHub Actions, GitLab CI/CD, and
CircleCI.

Chapter 13

Deploying Deno
Applications on Cloud
Platforms

Before diving into the specifics of each cloud provider, it is crucial to
understand the common cloud deployment strategies. There are three
primary approaches to deploying Deno applications to the cloud:

1. Containerization 2. Serverless Functions 3. Managed Platform - as - a -
Service (PaaS)

Each of these strategies has its own advantages and trade - offs, and
choosing the right one depends on the application’s requirements, infras-
tructure complexity, and team expertise. In most cases, the decision boils
down to a combination of cost, performance, and flexibility.

One great advantage of Deno is its single, self - contained executable,
making it an excellent candidate for container - based deployments. By
leveraging Docker or similar containerization technologies, developers can
quickly package their applications into lightweight and portable containers
that are easy to deploy and maintain.

Apart from containerization, developers can also consider deploying
Deno applications using serverless functions. Serverless functions enable
developers to write stateless functions that execute on demanding events.
This approach can significantly reduce maintenance overhead, as developers
only need to focus on writing their functions, while the cloud provider
manages the underlying infrastructure, scaling, and resources.

246

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 247

Finally, using Managed Platform-as-a-Service (PaaS) offerings is another
approach to deploy Deno applications on the cloud. These services abstract
underlying infrastructure complexities and provide a platform with pre-built
tools and features to deploy, run, and manage applications. This approach
allows developers to focus on building features and functionality without
worrying about the underlying infrastructure setup and maintenance.

Each major cloud provider offers a variety of services that cater to
the various deployment strategies discussed above. Let’s dive into each
provider’s offerings and learn how to deploy Deno applications on their
platforms.

- Amazon Web Services (AWS) supports Deno deployment across multiple
services such as AWS Lambda, Elastic Beanstalk, and EC2 instances. AWS
Lambda is the serverless offering from AWS that allows developers to
deploy Deno functions. For container - based deployments, Amazon Elastic
Beanstalk or EC2 instances with Elastic Load Balancing can be used to
deploy Deno applications with Docker.

- Microsoft Azure also provides suitable services for deploying Deno
applications, such as Azure Functions, Azure App Services, and Azure
Kubernetes Service (AKS). Azure Functions is Azure’s serverless offering,
which is ideal for deploying Deno functions. Azure App Services provides a
managed PaaS environment, while AKS is a managed Kubernetes platform
offering containerization and orchestration capabilities for Deno applications.

- Google Cloud Platform (GCP) offers services like Google Cloud Func-
tions, Google App Engine, and Google Kubernetes Engine (GKE), which
cater to different deployment strategies. Google Cloud Functions are similar
to AWS Lambda and Azure Functions, while Google App Engine is a man-
aged PaaS environment. GKE is a managed Kubernetes platform, offering
containerization and orchestration capabilities like AKS.

- Heroku, a platform as a service (PaaS) provider, also supports deploying
Deno applications. It offers a simple and developer - friendly interface
to deploy, scale, and manage Deno applications without worrying about
infrastructure management.

Regardless of the cloud platform chosen, it’s essential to follow best
practices in deployment, focusing on security, logging, and monitoring. En-
crypting data in transit and at rest, implementing proper access control
policies, and enabling secure communication channels are just a few examples

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 248

of security measures to be considered. Monitoring and logging application
behavior is crucial for maintaining application health and proactively ad-
dressing performance issues. Lastly, enriching application deployments with
features like autoscaling and distributed tracing can lead to a more resilient,
available, and cost - effective backend.

Overview of Cloud Deployments for Deno Applications

Before delving into the nitty - gritty details, it is essential first to appreciate
why cloud deployment is a hot topic in the Deno community. With the
ongoing rise in remote work and distributed systems, building applications
that can cater to a global audience while observing essential security and
performance features has become more critical than ever. Cloud platforms
offer the necessary infrastructure and tools to build and manage applications
while reducing overhead costs and maintenance associated with traditional
server - based infrastructure.

One of the first steps in deploying a Deno application to the cloud lies in
assessing and determining the most suitable cloud platform that fulfills the
application’s specific requirements. Factors such as cost, scalability, level
of support for Deno, security features, regional availability, and integration
with other tools and services are essential to take into account when choos-
ing a cloud platform. Though Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP) are popular choices for many
developers worldwide, other contenders like Heroku and DigitalOcean also
offer streamlined deployment environments for Deno applications.

Regardless of the chosen cloud platform, certain practices must be ob-
served when preparing a Deno application for deployment. To begin with,
the application must be architected with cloud infrastructure compatibility
in mind, which often entails utilizing containerization frameworks like Docker
or Kubernetes. Application secrets - like API keys or database credentials
- should be managed using environment variables to ensure secure access
and maintainability. Moreover, an essential aspect of a cloud - ready Deno
application is its adherence to a platform’s specific high - security recommen-
dations and default Deno features, like setting appropriate permissions for
individual operations.

Once your Deno application has been adapted for the cloud, the next

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 249

steps for cloud deployment vary depending on the chosen platform. AWS
offers Lambda, Elastic Beanstalk, and EC2 options, all of which differ in
their level of abstraction and deployment mechanisms. Azure’s offerings
include Functions, App Services, and Kubernetes Service (AKS), while
GCP enables deployment via Cloud Functions, App Engine, and the Google
Kubernetes Engine (GKE). Each hosting option comes with its specific
feature set, configuration requirements, and learning curve.

Maintaining cloud deployments also requires a strong focus on monitoring,
security upgrades, and optimizing resource usage. Continuous Integration
and Continuous Deployment (CI/CD) pipelines ensure that your Deno
applications are consistently tested and deployed to the cloud, minimizing
human errors and facilitating speedy delivery. Logging services help you
stay aware of your application’s health and resource consumption, while
autoscaling features ensure that your infrastructure scales based on demand
to minimize latency and overall costs.

As the ecosystem of Deno applications continues to evolve, so too will
the strategies for successful cloud deployment. Embracing distributed
systems, continuous deployment, cost - effective scalability, and robust
security measures is what marks the difference between a successful Deno
application and one that languishes in the shadows. Adopting these best
practices will not only enhance the value of your cloud deployment but also
ensure that you ride the wave of innovation that Deno aims to bring to
the software development landscape. Together, cloud platforms and Deno
create the perfect combination for efficient, secure, and resilient applications
tailored for the ever - changing and demanding world we live in today.

Choosing the Right Cloud Platform for Your Deno Ap-
plication

Choosing the right cloud platform for your Deno application involves evalu-
ating the unique requirements of your project, understanding the various
cloud offerings available, and aligning the benefits of each platform with
your specific needs. We will explore the various features, pricing models,
and resources available on the most popular cloud providers to help you
make an informed decision on which cloud platform best suits your Deno
application.

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 250

When evaluating a cloud platform, consider scalability, performance, cost,
developer experience, and the available features. Many cloud providers offer
a range of services and tooling for deploying, managing, and monitoring
your application beyond traditional server environments. In particular,
serverless computing - abstracting away physical infrastructure management
- enables developers to focus on writing code and has become an attractive
deployment option for Deno applications.

Let’s dive into the three prominent cloud platforms - Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP) -
and analyze their strengths, weaknesses, and suitability for different Deno
applications.

AWS has evolved into a leading cloud platform in terms of market share,
available resources, and overall performance. The platform provides a wide
range of services to deploy Deno applications, such as Lambda for serverless
computing, Elastic Beanstalk for platform-as-a-service (PaaS), and EC2 for
more traditional virtual server environments. Additionally, Amazon provides
essential services for managing databases (RDS, DynamoDB), storage (S3,
EFS), and networking (VPC, Route 53), which can be efficiently tied together
using AWS SDK for Deno. With mature tooling, extensive documentation,
and a robust community, AWS is a great choice for most Deno applications,
particularly those requiring high scalability and global presence.

Microsoft Azure, while not as vast as AWS in terms of market share
and available services, has evolved into a formidable competitor, catering to
developers with a user - friendly interface and an excellent integration with
Visual Studio and other Microsoft products. Azure offers several avenues
for deploying Deno applications, such as Azure Functions for serverless,
App Services for PaaS, and AKS for container orchestration. Paired with
Azure’s comprehensive set of services, including Database for PostgreSQL,
CosmosDB, and Blob Storage, it provides an attractive landscape for Deno
applications, especially within organizations utilizing the Microsoft ecosys-
tem.

Google Cloud Platform, though third in market share, is renowned for its
performance, developer experience, and innovations in AI, machine learning
(ML), and data analytics services. GCP provides various deployment options
for Deno applications, such as Cloud Functions for serverless, App Engine
for PaaS, and GKE for container orchestration. GCP also offers services

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 251

for managing databases (Firestore, Cloud SQL), storage (Cloud Storage,
Persistent Disks), and networking (GKE Ingress, VPC). While GCP may
lack the sheer volume of services offered by AWS, it prides itself on developer
- centric design and powerful data - driven capabilities, making it a strong
contender for Deno projects focused on ML and analytics.

When choosing a cloud platform, it’s essential to evaluate the specific
needs of your Deno application beyond the fundamental services. Prioritize
the platform’s features that cater to the unique requirements of your project,
such as integrations with your preferred database, data analytics services, or
IoT capabilities. Additionally, consider the target audience’s geographical
location and regional offerings of each platform to optimize performance
and latency.

Lastly, consider the potential cost of each platform. Many cloud providers
offer free tier usage or trial periods, but it’s crucial to understand other
factors that may impact costs, such as data transfer, API calls, and storage.
Carefully analyze and compare the pricing structure of each platform, taking
into account future scaling needs and unexpected spike handling.

In conclusion, the right cloud platform for your Deno application relies
on your specific requirements, priorities, and budget. AWS, Microsoft Azure,
and GCP each offer unique strengths and cater to diverse project needs. By
thoroughly assessing their offerings and aligning those to your application’s
demands, you can make a well - informed decision that will enable your Deno
application to thrive in today’s competitive cloud landscape. As you embark
on this journey, remember that the ecosystem of Deno and cloud services
is continuously evolving; keep pace with these innovations and adapt your
project accordingly to ensure future success.

Preparing a Deno Application for Cloud Deployment

Containerization is the process of creating an isolated, lightweight, and
portable runtime environment that contains everything an application needs
to run. When deploying Deno applications to the cloud, containerization
eases the management of dependencies, simplifies versioning, and allows for a
consistent runtime environment across development, testing, and production.
Docker is a widely -used containerization platform, and creating a Dockerfile
for your Deno application is an essential first step towards containerization.

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 252

The Dockerfile should include instructions on installing Deno, setting up
the necessary environment variables, copying your application code, and
configuring the network and other runtime settings. Additionally, consider
using a minimal base image, such as Alpine Linux, to keep the container
lightweight and reduce the attack surface.

Environment variables play a vital role in configuring a Deno application
for different stages of the development lifecycle. They allow your application
to adapt its behavior, depending on the intended environment (development,
testing, or production). In a cloud deployment, managing environment
variables becomes even more crucial, as applications often require different
settings for scaling, performance tuning, and connecting to other cloud
resources. Deno provides built - in support to control environment variables
through the ‘Deno.env‘ API. Ensure that sensitive information, such as
API keys and credentials, is not hardcoded in your application code but is
provided as environment variables. Furthermore, do not expose unnecessary
environment details that can compromise security. When using containeriza-
tion, define environment variables inside the Dockerfile or pass them during
container initialization.

Configuration management is another important aspect to consider when
preparing a Deno application for cloud deployment. Applications may require
different configurations for each environment, such as database connections,
caching settings, and performance optimizations. In addition, maintaining a
consistent configuration across different cloud components, such as containers
and managed services, can significantly improve the reliability and efficiency
of your application. Create a centralized configuration module in your Deno
application, which loads the appropriate settings based on the environment
variables. Make use of Deno’s TypeScript support to enforce strong typing
and validation of configuration objects. Store the configuration for different
environments in separate files, ensuring that sensitive information remains
segregated and secure.

Deploying a Deno Application on Amazon Web Services
(AWS)

To begin, let’s explore the first choice for deploying Deno applications
on AWS: AWS Lambda and API Gateway. AWS Lambda is a serverless

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 253

compute service, allowing developers to run code without provisioning or
managing servers. It automatically scales applications based on the number
of requests and only charges for the compute time consumed, making it an
attractive option for many developers. Coupled with API Gateway - a fully
managed service for creating and managing custom APIs - Deno applications
can be easily transformed into serverless RESTful APIs, enabling seamless
interaction between users and applications.

Here is an example workflow when using Lambda and API Gateway to
deploy a Deno application:

1. Package the Deno application into a zip file, along with a runtime
bootstrap (deno - lambda) to support running Deno on Lambda. 2. Create
an AWS Lambda function with a custom runtime based on the provided
bootstrapper. 3. Upload the packaged Deno application to the Lambda
function. 4. Configure an API Gateway with relevant endpoints, integrating
them with the Lambda function. 5. Test, deploy, and monitor the integrated
solution.

The second option for deploying Deno applications on AWS is Elastic
Beanstalk - a fully managed service that automates resource management,
monitoring, and scaling. With just a few clicks, developers can deploy, scale,
and monitor a Deno application using familiar AWS tools. Elastic Beanstalk
supports several platforms, including Node.js, and with some minor con-
figuration changes, Deno applications can also be hosted on this service.
The advantages of Elastic Beanstalk include easy deployment, environment
management, auto - scaling, and monitoring using AWS CloudWatch.

The following steps demonstrate deploying a Deno application on Elastic
Beanstalk:

1. Create a new Elastic Beanstalk environment with a Node.js platform.
2. Modify the environment’s proxy configuration to initialize the Deno
runtime. 3. Package the Deno application into a zip file. 4. Upload the
packaged Deno application to the Elastic Beanstalk environment. 5. Fine -
tune environment configurations such as scaling rules and security groups.
6. Monitor and manage the application using Elastic Beanstalk Dashboard
and AWS CloudWatch.

Finally, the third option for deploying Deno applications on AWS is
the EC2 service with Load Balancing. EC2 (Elastic Compute Cloud) is
a scalable compute service that allows users to run instances on virtual

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 254

servers. EC2 instances provide granular control over the environment, en-
abling developers to configure and optimize the performance of their Deno
applications. EC2 instances can also be registered to Elastic Load Balancing
(ELB) to distribute incoming traffic across multiple instances, improving
fault tolerance and application availability. While offering flexibility, deploy-
ing Deno applications on EC2 and ELB require a deeper understanding of
infrastructure management and maintenance.

Here is an example workflow when using EC2 and ELB to deploy a Deno
application:

1. Create an EC2 instance with a suitable AMI (Amazon Machine
Image). 2. Manually or using automation scripts, install and configure the
Deno runtime on the instance. 3. Deploy the Deno application on the EC2
instance and configure the necessary security groups. 4. Set up an Elastic
Load Balancer and attach the instance(s) to it. 5. Configure DNS and
SSL/TLS settings for incoming traffic. 6. Monitor and scale instances based
on load and requirements.

In conclusion, deploying a Deno application on AWS offers a wealth of
options to cater to the unique needs and requirements of individual projects.
While AWS Lambda and API Gateway excel in providing a serverless
architecture, Elastic Beanstalk ensures easy deployment and hands - off
environment management. On the other hand, EC2 with Load Balancing
offers maximum control and customization but requires greater infrastructure
expertise. Choose the right deployment approach that matches your project’s
needs and experience the potential of AWS’s powerful infrastructure to
bolster your Deno applications.

Deploying a Deno Application on Microsoft Azure

Azure Functions is a popular serverless computing service that allows develop-
ers to build and deploy applications without having to manage infrastructure.
This approach is particularly suitable for Deno applications with small to
moderate traffic and resources demands, as it offers multiple benefits such
as automatic scaling and cost efficiency. To deploy a Deno application using
Azure Functions, first create a new Azure Functions App by following these
steps:

1. Navigate to the Azure portal and sign in. 2. Click ’Create a resource,’

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 255

then search for ’Function App.’ 3. Select Function App and click ’Create.’
4. Fill in the required information and click ’Create.’

After creating the Function App, you will need to create a custom Azure
Functions runtime that supports Deno. The easiest method to create a
custom runtime is to use the Azure Functions custom handlers feature.
Create a ‘handlers.ts‘ file in your Deno project directory with the following
content:

“‘javascript import * as DenoFunctions from ”https://deno.land/x/azure functions/mod.ts”;
export async function HttpAzureFunctionDenoHandler(req: Request) {

const { response } = await DenoFunctions.handler(req); return response; }
“‘

Replace the content inside ‘DenoFunctions.handler()‘ with your Deno
application logic. Next, create an ‘azure.functions.yml‘ file with the following
content:

“‘yaml version: 1.0 scaling: minReplicas: 1 maxReplicas: 10 triggers: -
http: true globs: - ’**/*.ts’ - ’!**/*.test.ts’ “‘

This configuration will ensure that your Deno handler is scaled based on
demand and that only non - test TypeScript files are deployed in the Azure
Functions App.

Now it’s time to configure the deployment settings in your Azure Func-
tions App. In the Azure portal, add the ‘DenoVersion‘ app setting under
your Function App’s settings, and set its value to the desired Deno version.
While in the settings, also enable the ’WEBSITE RUN FROM PACKAGE’
app setting and set its value to ’1’ to allow deployment from a ZIP package.

To deploy your Deno application with the custom handler:
1. Package your Deno application as a ZIP file. 2. In the Azure portal,

navigate to your Function App. 3. In the ’Deployment Center’ section,
choose ’ZIP Deploy’ as the deployment method and upload your ZIP file.

Your Deno application is now deployed on Azure Functions, and it will
automatically scale depending on traffic and demand.

Another method to deploy a Deno application on Azure is by using
Azure App Services, a flexible, fully managed Platform as a Service (PaaS)
that supports custom runtimes and docker containers. Deploying a Deno
application on Azure App Services first requires creating a Docker container
with Deno installed.

Begin by creating a ‘Dockerfile‘ with the following content:

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 256

“‘ FROM hayd/deno
Set the working directory WORKDIR /app
Copy the files required for building the app COPY . .
Expose the port that your app runs on EXPOSE 8080
Set the entrypoint ENTRYPOINT [”deno”, ”run”, ” - - allow - net”,

”app.ts”] “‘
Replace ’8080’ with the port your application listens on, and ’app.ts’

with the entry point of your Deno application.
Use Docker to build and run the container to ensure everything works

correctly:
“‘bash $ docker build -t deno app . $ docker run -p 8080:8080 deno app

“‘
To deploy the Docker container on Azure App Services, do the following:
1. Push the Docker container to a container registry such as Docker Hub

or Azure Container Registry. 2. In the Azure portal, create a new Web
App. 3. Configure the Web App to use the container registry. 4. Deploy
the container to the Web App.

Now your Deno application is running on Azure App Services, where you
can take advantage of other services and features such as custom domains,
SSL, and monitoring.

For large - scale Deno applications, Azure Kubernetes Service (AKS) is a
robust and powerful solution. It offers container orchestration, scalability,
and management on a fully managed Kubernetes platform. Deploying a
Deno application on AKS involves creating a Kubernetes deployment and
service configuration, and then pushing the container to AKS.

Create a ‘k8s deployment.yaml‘ file with the following content:
“‘yaml apiVersion: apps/v1 kind: Deployment metadata: name: deno

- app spec: replicas: 3 selector: matchLabels: app: deno - app template:
metadata: labels: app: deno-app spec: containers: - name: deno-app image:
<your - container - registry - url>/deno app:latest ports: - containerPort:
8080 “‘

Create a ‘k8s service.yaml‘ file with the following content:
“‘yaml apiVersion: v1 kind: Service metadata: name: deno - app spec:

selector: app: deno - app ports: - protocol: TCP port: 80 targetPort: 8080
type: LoadBalancer “‘

Replace ‘<your - container - registry - url>‘ in the ‘k8s deployment.yaml‘

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 257

file with the URL of the container registry where your Deno application’s
Docker image is hosted.

Use the ‘kubectl‘ command - line tool to deploy the Deno application on
AKS:

“‘bash $ kubectl create -f k8s deployment.yaml $ kubectl create -f
k8s service.yaml “‘

In conclusion, deploying Deno applications on Microsoft Azure is an
exciting journey that allows developers to harness the power of the cloud
platform and its offerings. By experimenting with serverless options like
Azure Functions, fully managed PaaS services like Azure App Services, or
robust container orchestration tools with Azure Kubernetes Service, one
can unlock new possibilities for Deno applications and ensure it scales and
performs optimally on the cloud. With a keen eye on the future, we will
continue to explore patterns and techniques for developing next - generation
web applications in Deno and TypeScript.</your - container - registry -
url></your - container - registry - url>

Deploying a Deno Application on Google Cloud Platform
(GCP)

To demonstrate the different deployment methods available on GCP, we
will use a sample Deno application that serves a REST API for managing a
collection of books. The application is built using Oak, a popular middleware
framework for Deno, and leverages TypeScript for type safety and enhanced
developer experience.

The first deployment option for our Deno application is Google Cloud
Functions, a serverless platform that lets you run your code without pro-
visioning or managing servers. This approach aligns with the serverless
architecture paradigm, where applications consist of individual, stateless
functions that respond to events or invocations. Before deploying our Deno
application to Cloud Functions, we must convert it into a single JavaScript
file using the ’deno bundle’ command. Upon successful bundling, we can
update the package.json file to include a ’start’ script that invokes the
bundled JavaScript file with the required Deno flags and create a Cloud
Function using the Google Cloud CLI.

Next, we examine the Google App Engine, a fully managed, scalable

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 258

platform for building and hosting web applications in the cloud. By providing
built-in support for automatically scaling your application based on incoming
traffic, the App Engine allows our Deno application to effortlessly serve
a massive number of users. To deploy the Deno application on the App
Engine, we need to create an ’app.yaml’ configuration file specifying the
custom runtime for Deno, the required environment variables, and the entry
point for our application. Once configured, we can use the Google Cloud
CLI to deploy our application to the App Engine environment.

Google Kubernetes Engine (GKE), as opposed to Cloud Functions
and App Engine, offers much more control and configurability over the
deployment environment. With GKE, we can create a container - based
Deno application orchestrated by Kubernetes in the GCP ecosystem. To
get started, we need to bundle our application using the ’deno bundle’
command and create a Dockerfile, describing the base image, the necessary
setup steps, and the command to start the application. The resulting image
can be uploaded to the Google Container Registry, and the corresponding
Kubernetes manifests can be created to define the application’s deployment,
service, and other necessary resources. Once the Kubernetes resources have
been defined and applied using kubectl, our Deno application will be up
and running within the GKE cluster.

Each of these deployment options comes with its own set of advantages
and challenges. Cloud Functions are best suited for small, event - driven
applications where the serverless nature of the platform aligns with the
problem domain. App Engine, on the other hand, is a great fit for tradi-
tional web applications with automatic scaling capabilities, and GKE offers
maximum configurability and control over the deployment environment for
more complex applications.

When deploying a Deno application on GCP, it is essential to consider the
security aspects of the Deno runtime. By granting the necessary permissions
explicitly through Deno flags in Cloud Functions or configuring Deno in
your Dockerfile for App Engine and GKE, you can enforce the strict security
model built into Deno and maintain the security posture of your application.

To ensure an even smoother deployment experience across these plat-
forms, consider incorporating continuous integration and continuous deploy-
ment (CI/CD) practices. Tools such as GitHub Actions, GitLab CI/CD,
and CircleCI can be configured to automatically build, test, and deploy your

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 259

Deno application whenever changes are pushed to the repository.

Deploying a Deno Application on Heroku

To begin, you will need to have an account on Heroku. If you don’t have
one already, sign up for a free account at https://signup.heroku.com/. After
signing up, download and install the Heroku CLI, which lets you manage and
deploy applications from the command line. You can find the installation in-
structions for your platform at https://devcenter.heroku.com/articles/heroku
- cli.

With your Heroku account and CLI set up, navigate to your Deno
application directory and initialize it as a Git repository (if you haven’t
done so already):

“‘ git init “‘
Next, create a new Heroku application:
“‘ heroku create your - app - name “‘
Make sure to replace ‘your - app - name‘ with the desired name for

your application. This name will be part of your application URL, e.g.,
https://your - app - name.herokuapp.com. If you don’t specify ‘your - app -
name‘, Heroku will generate a random name.

Heroku supports various buildpacks, which are scripts that automate
the process of setting up a runtime and environment for your application.
Since Deno is relatively new, there isn’t an official Heroku buildpack for it
yet. However, the community has provided some buildpacks that work well.
We’ll be using the ‘deno buildpack‘ by the community member ‘chasestraub‘:

“‘ heroku buildpacks:set https://github.com/chasestraub/heroku-buildpack
- deno.git -a your - app - name “‘

Now let’s configure the Heroku environment to work with our Deno
application. First, create a ‘Procfile‘ in the root of your project. This file
tells Heroku how to run your application:

“‘ web: deno run - - allow - net - - allow - read app.ts “‘
Replace ‘app.ts‘ with the name of your main Deno entry point file. Add

any required permission flags, such as ‘ - - allow - net‘ or ‘ - - allow - read‘.
In order for Heroku to know the exact Deno version needed, create a

‘.deno -version‘ file in the root of your project and specify the desired version:
“‘ 1.16.2 “‘

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 260

With the configuration in place, it’s time to commit the changes and
deploy your Deno application to Heroku:

“‘ git add .deno - version Procfile git commit -m ”Add Heroku configura-
tion” git push heroku master “‘

The deployment process will download and install the specified Deno
version, compile your TypeScript code, and start your application on the
specified port. You can check the deployment logs with the following
command:

“‘ heroku logs - - tail “‘
After deployment, open your browser and visit https://your - app -

name.herokuapp.com to ensure that your Deno application is running prop-
erly. Alternately, you can open the application with the Heroku CLI
command:

“‘ heroku open “‘
You’ve successfully deployed your Deno application on Heroku! This is

just the beginning of the journey as the Deno ecosystem continues to evolve
and mature. While Heroku provides an easy and hassle - free environment
for deployment, it’s important to monitor and optimize your application.
Review logs, analyze performance, and keep an eye out for the latest best
practices. As you embrace this exciting new runtime, remember that the
Deno community is with you, ready to create the tools and libraries needed
for your success. Deploying on Heroku is but one stop on the infinite road
of possibilities that lie ahead in the burgeoning world of Deno.

Continuous Integration and Continuous Deployment
(CI/CD) Practices for Deno Applications

Continuous Integration and Continuous Deployment (CI/CD) have become
essential practices for modern software development. CI ensures that devel-
opers integrate their code changes into a shared repository regularly, usually
through a version control system like Git. CD automates the software deliv-
ery process by deploying the application to a production environment once
tests have passed and the code is ready. In the case of Deno applications,
CI/CD practices can significantly improve the quality and reliability of
software projects, while also increasing team productivity.

To implement CI/CD practices for Deno applications, developers can

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 261

leverage a variety of tools and services. Some popular options include
GitHub Actions, GitLab CI/CD, and CircleCI. These tools and services
enable automated workflows, testing, building, and deployment of Deno
applications. To get started, developers need to choose a CI/CD service
and configure the required pipelines or workflows according to their team’s
specific requirements.

As an example, consider a Deno application that uses the ‘Deno.test‘
framework for unit testing. To set up a CI/CD pipeline using GitHub Actions,
developers need to create a new file in the repository’s ‘.github/workflows‘
directory with a descriptive name, such as ‘deno ci.yml‘. Inside this file,
developers can configure the CI/CD pipeline using YAML syntax. Below is
an example configuration for a basic Deno CI/CD pipeline:

“‘yaml name: Deno CI
on: [push, pull request]
jobs: test: runs - on: ubuntu - latest steps: - name: Checkout uses:

actions/checkout@v2 - name: Set up Deno uses: denoland/setup - deno@v1
with: deno - version: v1.x - name: Run tests run: deno test - - allow - all “‘

In this example, the pipeline is triggered on every push or pull request
to the repository. The pipeline is executed on an Ubuntu VM and performs
three steps: checking out the code, setting up the Deno environment, and
running the tests. Notice the straightforwardness in configuring a Deno -
specific CI/CD pipeline - installing Deno and running tests are done with
minimal configuration required.

Once the pipeline is up and running, developers can become more
ambitious and incorporate features such as caching dependencies, automatic
deployment, and build matrices for different Deno versions or operating
systems. This will enhance the pipeline’s efficiency and help catch potential
issues early.

A crucial aspect of the CI/CD pipeline for Deno applications is ensuring
that the tests executed cater to different permission levels. Deno’s secure
- by - default approach requires developers to explicitly grant permissions
for actions, like accessing the filesystem or making network requests. It is
essential to include tests that exercise these permissions to verify that the
application behaves as expected in different scenarios.

As more complex Deno applications emerge, CI/CD practices will need to
evolve to adapt to their intricacies. For example, integrating with databases,

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 262

using templating engines, or leveraging third - party modules might require
additional steps in the pipeline. Continuous refinement of the CI/CD
pipeline ensures the resilience and reliability of Deno applications and caters
to the ever - evolving needs of an application’s lifecycle.

In conclusion, embracing CI/CD practices in Deno applications is not
only a valuable endeavor but also a vital aspect of modern software devel-
opment. The Deno community is expanding, and with it, the availability
of sophisticated tools and resources to streamline the process. As Deno
continues to gain traction, teams can seize the opportunity to capitalize on
its unique offerings and enhance their operations. In the grand pantheon of
Deno’s capabilities, a well - crafted CI/CD pipeline stands as a monument
to the very principles that underpin the Deno project: security, simplicity,
and adaptability. A strong CI/CD implementation will set the stage for a
bright future, where Deno and TypeScript continue their march towards
maturation and widespread adoption.

Monitoring and Logging for Deno Applications in the
Cloud

In any successful application, monitoring and logging are crucial for main-
taining application health, diagnosing issues, and ensuring an excellent user
experience. In the world of Deno, this importance is escalated even further
as applications become more complex, interactive, and distributed across
various cloud platforms.

One of the most powerful tools at your disposal for monitoring your
Deno applications is distributed tracing. In a cloud environment, where
your application could be dispersed across multiple services and spanning
several microservices, understanding the flow of a single request can become
tangled and intricate. Distributed tracing gives you an overview of this flow,
enabling you to quickly identify bottlenecks and latency issues.

Deno’s support for the OpenTelemetry API opens up the possibility of
using distributed tracing solutions such as Jaeger or Zipkin, which allow
you to visualize complex traces and pinpoint performance issues in your ap-
plication. Moreover, standardizing your traces with OpenTelemetry enables
you to use comprehensive APM (Application Performance Monitoring) tools
like Datadog or New Relic, which can collect and analyze performance data

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 263

in real - time.
Another important aspect of monitoring Deno applications in the cloud

is structured logging. While traditional log statements might be useful
during local development, they can become cumbersome and challenging to
analyze in a distributed cloud environment. Structured logs, which assign
machine - readable keys to log data, make it easier to search, filter, and
aggregate the logs across multiple services and instances.

Log - management tools, such as Fluentd and Logstash, can be used to
collect and parse structured logs from your Deno application. By forwarding
your logs to a centralized logging platform like Elasticsearch, you can use
powerful search and alerting features to quickly identify anomalies and
diagnose issues. Visualization tools like Kibana can help you create powerful
and insightful dashboards to monitor your application’s overall health.

When it comes to implementing logging in your Deno application, you
can utilize the built - in ‘console‘ object or leverage third - party libraries
such as Pino, which supports structured logging. It’s important to follow
best practices when logging sensitive data and avoid capturing sensitive
information like user credentials and personally identifiable information
(PII).

As your Deno application grows in scale, the need for effective monitoring
and logging becomes paramount. By investing in comprehensive monitoring
and logging solutions, your applications achieve a level of maturity and
resilience that keeps them in step with the ever - evolving cloud landscape.

Scaling Deno Applications on Cloud Platforms

Horizontal scaling, the process of adding more instances of your application
to handle increasing loads, is a common strategy in the cloud. This technique
is achieved by distributing incoming traffic among multiple instances using
load balancers, which evenly distribute the load and mitigate the impact of
instance failures. Cloud platforms like AWS, Microsoft Azure, and Google
Cloud offer managed load balancing tools that automatically redistribute
the traffic, leaving you to focus on your application development.

Vertical scaling, on the other hand, involves adding more resources
(such as CPU, memory, or storage) to an existing instance to improve
its performance. While it may be more straightforward than horizontal

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 264

scaling, vertical scaling has its limits regarding the upper bounds of hardware
resources. Careful consideration must be given to the trade - offs between
the two techniques based on your unique application requirements.

Both horizontal and vertical scaling methods can be combined with
autoscaling, which refers to the dynamic adjustment of instances or resources
based on predetermined policies. Utilizing autoscaling, instances can be
spun up or down as traffic demands increase or decrease, ensuring optimal
resource utilization and cost - effectiveness. Platforms such as AWS Auto
Scaling, Azure Autoscale, and Google Cloud Autoscaler provide seamless
support for configuring and managing autoscaling infrastructure.

While the scalability of a Deno application is critical, maintaining its
security remains equally crucial. Developing applications with a security -
first approach ensures that user data remains protected during the scaling
process. Deno itself comes built - in with a strong permission system,
which should subsequently be enforced within your cloud deployments.
Additionally, cloud providers offer several services such as encryption, key
management, and threat detection to augment Deno’s security features.

Furthermore, the integration of your Deno applications with modern
database solutions adds another layer of performance and scalability. Deno
libraries such as ‘deno mongo‘, ‘deno mysql‘, and ‘deno postgres‘ enable
seamless connectivity between your Deno application and various databases.
Employing distributed databases that scale independently of your application
instances can help address potential bottlenecks and ensure consistently
high performance.

As your Deno application scales, monitoring and logging become vital
components in optimizing performance and maintaining uptime. Distributed
Tracing and Application Performance Monitoring (APM) tools by cloud
providers aid in the identification of potential issues before they escalate.
Structured Logging, which involves in - depth record - keeping of application
events, assists in debugging and performance analysis to ensure optimal
resource usage.

A final note of consideration lies in the continuous collaboration between
the Deno and TypeScript communities. The ongoing development of features
and enhancements ensures that your application remains abreast of the
latest advancements in the JavaScript ecosystem. As we peer into the
future of web development, the relationship between Deno, TypeScript, and

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 265

modern cloud platforms offers an exciting horizon of possibilities.
In line with the ever - evolving nature of web development, the scaling

methods and approaches for Deno applications on cloud platforms must
adapt to embrace these advancements. Deno has laid the foundation, with
its inherent simplicity and security, and empowered development teams to
build sophisticated, blazingly fast applications. As we progress through this
journey, the symbiotic relationship between Deno, TypeScript, and cloud
platforms will continue to shape the future of web applications across every
imaginable use case. Welcome aboard!

Security Best Practices for Deno Applications on Cloud
Platforms

One critical aspect of securing Deno applications on cloud platforms is
adherence to the principle of least privilege. This principle entails limiting
the permissions and access rights granted to a Deno application by granting
it only the bare minimum of privileges required for it to operate effectively.
This helps minimize the attack surface and reduce the chances of unau-
thorized access to sensitive resources and data in case the application is
compromised. Deno’s built - in permission model facilitates the enforcement
of this principle by allowing developers to fine - tune the permissions granted
to their application, ensuring that it has access only to the resources it
needs.

In addition to leveraging Deno’s built - in permission model, it is equally
important to secure the application’s communication channels. When
deploying a Deno application in the cloud, it is highly recommended to
encrypt all network communication using Transport Layer Security (TLS)
to prevent a variety of attacks, such as man - in - the - middle (MITM)
attacks. This can be achieved by employing HTTPS for web communications,
requiring the use of a valid SSL/TLS certificate. Furthermore, any data
persisted by the application should ideally be encrypted both at rest and in
transit. This can be achieved by using encryption algorithms provided by
the cloud provider’s key management system, or if necessary, implementing
custom encryption solutions.

Another crucial aspect of securing cloud - based Deno applications is
implementing strong authentication and authorization mechanisms. Utilizing

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 266

technologies such as JSON Web Tokens (JWT) for authentication and
OAuth2 or OpenID Connect for authorization can help ensure that only
valid and verified clients can successfully access your application.

Monitoring and logging are also essential components of any robust
security strategy, wherein cloud providers offer several platform - specific
tools for monitoring, log aggregation, and incident response. By using
these tools, developers can keep track of application performance, identify
attempted security breaches, and respond quickly to any emerging threats.
Implementing structured logging can also considerably streamline the process
of identifying and tracing security incidents, allowing developers to focus on
addressing the underlying issues more efficiently.

Securing external dependencies is another crucial consideration for Deno
applications in the cloud. To minimize the risk of introducing vulnerabilities
via third - party modules, developers should carefully audit the code of any
external dependencies before including them in their application. Moreover,
maintaining an up - to - date inventory of all dependencies and applying
patches promptly can further lower the likelihood of a security breach.

As the Deno ecosystem grows and evolves, it is vital to embrace a
proactive approach to security. A Deno application must be treated as a
living entity, constantly subject to change, adjustment, and improvement.
This perspective should similarly apply to the security measures implemented
for such applications. From following the latest security updates and best
practices to continuously monitoring and adjusting an application’s security
posture, developers should always be striving to take their Deno applications
to new heights of security and reliability.

In conclusion, securing Deno applications on cloud platforms requires a
thoughtful and diligent approach underpinned by a deep understanding of
both Deno-specific features and cloud platform security measures. Keeping a
firm grasp on the principle of least privilege, enforcing robust authentication
and authorization mechanisms, encrypting data in transit and at rest, and
implementing a vigilant monitoring and logging system can contribute to
comprehensive and well - rounded security for Deno applications in the
cloud. As we forge ahead in our exploration of the Deno ecosystem, it is
essential to remember that security is an ongoing process and one that must
continually adapt to the ever - changing landscape of web development and
cloud technology.

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 267

Cost Optimization Strategies for Deploying Deno Appli-
cations on Cloud Platforms

As applications grow in size, complexity, and in the number of users they
serve, it becomes crucial for developers to optimize their deployment costs
on cloud platforms. With the rise of Deno as a popular runtime for building
and deploying web applications, there is a growing need for adopting cost
- effective strategies when running Deno applications in the cloud. By
employing the right tactics, you can keep costs under control while ensuring
the performance and reliability of your applications remain unaffected.

One important aspect to consider when looking at cost optimization is
selecting the right cloud platform and services best suited for your Deno
application. Understanding the various services offered by the major cloud
platforms - Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform (GCP), and Heroku - will help you make informed decisions as you
navigate the options available to you. When making your choice, prioritize
the features that matter most to your application while keeping in mind
the costs associated with each service.

Leveraging containers is a key aspect of cost optimization in Deno
applications. Containers allow you to package your Deno application along
with its dependencies with a more efficient allocation of resources and lower
overhead in comparison to virtual machines. Docker containers, for instance,
can greatly reduce deployment costs by ensuring you’re only paying for the
resources you’re actively using.

Another essential step in cost optimization is identifying and eliminating
idle resources. It can be easy to lose track of unused components - such as
outdated versions of your application or unnecessary virtual machines-which
can contribute to increased costs. By diligently managing your resources,
you’ll ensure that you only pay for what you need to run your application
effectively.

Autoscaling is an important cost optimization strategy, allowing your
Deno application to automatically scale its resources up or down based
on real - time usage metrics. This ensures that your application is only
consuming resources when needed, thus reducing costs during periods of
low usage. By combining horizontal scaling (adding more instances of
your application) and vertical scaling (increasing the resources of a single

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 268

instance), you can achieve the optimal balance of performance and cost.
Caching can help significantly reduce your cloud bill by minimizing the

computational resources required to serve user requests. By making effective
use of services like Amazon Web Services CloudFront, Microsoft Azure
CDN, or Google Cloud CDN, Deno applications can offload computational
work from their main application servers to edge caches spread globally.
This not only improves the performance of your application but can lead to
substantial cost savings.

Monitoring plays a critical role in the optimization of application de-
ployment costs. Keep an eye on your resource utilization metrics to identify
trends and patterns in usage over time. This information will help you
make data - driven decisions to scale resources accordingly and ensure you’re
operating at minimal cost while maximizing the value you deliver to your
users.

Efficient database management also plays a significant role in lowering
costs. This can be achieved by carefully selecting the most appropriate
database service, optimizing database queries, and performing proper in-
dexing. Additionally, consider serverless database options like AWS Aurora
Serverless or Azure Cosmos DB - it scales on - demand, freeing your Deno
application from relying on costly, always - on instances.

Lastly, it’s helpful to establish a culture of cost - awareness within your
development team. Encourage developers to monitor deployment costs and
strive for more efficient solutions. By continually iterating and refining
your Deno application’s architecture, you’ll be better prepared to adapt
to the ever - changing demands of the market while minimizing your cloud
expenditure.

In the end, striking the right balance between cost and performance is
an ongoing process. As the Deno ecosystem continues to evolve and mature,
developers must remain vigilant and up to date with the latest best practices
and platform offerings. But remember, cost optimization isn’t solely about
minimizing expenses - rather, it revolves around delivering the best possible
experience for your users at the most sustainable price point. With this
mindset, you’ll be better equipped to tackle the challenges that lie ahead as
you deploy your Deno applications in the cloud. With a solid foundation for
cost optimization, you can focus on tackling the complexities of your Deno
applications as they continue to make an impact in the rapidly growing web

CHAPTER 13. DEPLOYING DENO APPLICATIONS ON CLOUD PLATFORMS 269

landscape.

Chapter 14

Deno Ecosystem, Tooling,
and Future Developments
in Deno and TypeScript

As we journey deeper into Deno’s ecosystem, it becomes apparent that the
tooling and infrastructure surrounding this TypeScript runtime is both inno-
vative and robust. From essential development tools, debugging capabilities,
to continuous integration and deployment systems, the Deno ecosystem
is built to support scalable, maintainable applications in diverse settings.
With its release relatively recent in 2018, the future undoubtedly holds
significant expansions and enhancements in both Deno itself and TypeScript
- the language it so prominently supports.

The crucial linchpin in Deno’s foundational development ecosystem is its
core set of essential tools. Among these are Deno’s ‘lint‘, ‘fmt‘, ‘bundle‘, and
‘test‘ commands, all which facilitate development through their respective
functionalities: static analysis, code formatting, module bundling, and
testing execution. When integrated effectively, these commanding operations
enable developers to work with standardized file formatting, granular error
detection, optimized application compilation, and comprehensive testing
processes, ensuring a seamless development workflow.

Debugging, as an inevitable aspect of software development, comes with
its fair share of necessities and complexities in Deno. Fortunately, Deno
provides a built - in invoking support system, simplifying the process of
debugging applications. Coupled with a visual solution like Visual Studio

270

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

271

Code, developers can elevate their debugging experience with functionalities
such as breakpoints, variable inspection, and call stack navigation.

Continuous integration (CI) and continuous deployment (CD) practices
are crucial in modern software development, enabling teams to maintain
high levels of collaboration and productivity. For Deno, several CI/CD
tools and services- like GitHub Actions, GitLab CI/CD, and CircleCI- are
readily available, making workflow automation, code quality enforcement,
and continuous deployment seamless within the Deno ecosystem.

While Deno shines in greenfield projects, it also presents transitional
opportunities for large - scale applications. Developers can incrementally
convert existing JavaScript applications to Deno and even leverage a hybrid
approach that combines Deno with Node.js to reap the benefits of both
technologies. This gradual transitioning process allows developers to intro-
duce Deno in more extensive codebases while mitigating risks related to a
complete, unfamiliar technology overhaul.

The Deno ecosystem proves its maturity in facilitating interactions
with databases, providing numerous libraries to support various database
systems, such as MySQL, PostgreSQL, MongoDB, Redis, and more. These
libraries uphold the best practices for database management in Deno, which
are vital to meet growing application demands, performance, and security
requirements.

As artificial intelligence and machine learning become increasingly promi-
nent in modern software, Deno is poised to follow suit, integrating AI and ML
functionalities into its ecosystem. With popular libraries like TensorFlow.js,
developers can harness Deno’s TypeScript support, performance optimiza-
tions, and secure sandbox environment to build intelligent applications that
can enrich user experiences and gather invaluable insights.

Performance optimization is another critical consideration in Deno appli-
cation development. Profiling and monitoring tools, such as Flamegraph, are
available to measure and optimize application performance. By identifying
bottlenecks, developers can create highly responsive applications that result
in exceptional user experiences, elevated by the performance improvements.

The prospects for Deno and TypeScript extend far into the foreseeable
future. With Ryan Dahl - the creator of Node.js - spearheading Deno, there
is a high probability that Deno will gain further traction and play an essential
role in the evolving web landscape. Thanks to Deno’s design philosophy,

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

272

centered around security and streamlined TypeScript support, there’s a
clear vision for the future. Developers can expect consistent improvements,
expansions in functionality, and stronger community support.

In this realm of possibilities, the Deno ecosystem might encompass yet -
unknown challenges in scalability and performance, integrating with cutting
- edge technologies like edge computing or WebAssembly. As an important
role player in this vast landscape of opportunities and challenges, both
Deno and TypeScript prepare to enter a new era of web development, where
embracing versatility and pursuing innovation is undoubtedly the key to
future success.

Overview of Deno Ecosystem and Tooling

The Deno ecosystem presents a comprehensive suite of tools and libraries
that elevate the developer experience. Emerging as an innovative JavaScript
and TypeScript runtime, Deno is actively reimagining the landscape of
modern web development. As we embark on this journey to discover the rich
environment fostered by Deno, let us not only delve into the various tools
available, but also examine the role they play in shaping the new generation
of web applications.

As an artist relies on a vast array of colors and brushes to create detailed
and intricate paintings, developers too harness the power of several essential
tools that expedite Deno application development. At the heart of the
ecosystem, Deno’s built - in command - line utilities such as ‘deno lint‘,
‘deno fmt‘, and ‘deno bundle‘ are invaluable to maintaining clean, readable
code, enforcing consistent coding styles, and bundling your code for seamless
deployment. From simplifying these mundane tasks to reducing vulnerability
to errors, these tooling marvels empower developers to immerse themselves
in a seamless and enjoyable coding experience.

However, it is crucial to acknowledge that these tools are but the tip
of the iceberg. Debugging is an integral part of software development,
and Deno ensures that identifying and rectifying bugs is both effortless
and efficient. Through its built - in debugging support and compatibility
with popular IDEs such as Visual Studio Code, Deno allows developers to
inspect processes and monitor the state of their applications. Eliminating
the cognitive barriers and enabling developers to instantly understand the

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

273

behavior of their code, Deno’s debugging capabilities streamline the software
development lifecycle.

The modern web demands applications that can scale, adapt, and evolve
with changing technological landscapes. Integration with databases, machine
learning, and artificial intelligence libraries is instrumental in building state
- of - the - art applications that harness the full potential of Deno. Combining
the power of popular machine learning libraries such as TensorFlow.js
with Deno’s native TypeScript support, developers can now weave intricate
tapestries of intelligence within their applications, enriching user experiences
like never before.

In a world where performance is paramount, Deno equips developers with
indispensable tools for performance profiling and analysis. As applications
grow and become more intricate, understanding their runtime behavior is
crucial in ensuring efficient resource usage and enhanced user interactions.
By leveraging the capabilities of the Chrome DevTools Protocol and spe-
cialized libraries such as ‘deno perf‘, developers can paint vivid pictures
of application performance, identify bottlenecks, and implement impactful
optimizations that propel their applications to new heights.

Does the story end here? No. The Deno ecosystem is an ever - growing
landscape teeming with third - party libraries and modules. Highly versatile,
these modules hold the potential to bridge gaps and enrich functionality
further, creating limitless possibilities. While some may argue that the
reliance on third - party libraries poses risks to application security and
performance, Deno’s security model and permissions architecture stand tall
as a guardian, striking a balance between adaptability and safety.

As we stand on the shores of this vast ocean of tools, libraries, and
opportunities, we cannot help but wonder what the future holds for Deno.
With upcoming enhancements and new features surfacing in the horizon,
the Deno ecosystem continues to develop and flourish. As developers, we
find ourselves inspired to explore the depths of this world, embracing the
tools, techniques, and wisdom offered to us. With each wave that crashes
upon the shores of the Deno landscape, we stand steadfast in our quest to
build applications that defy limitations and reshape the world as we know
it.

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

274

Essential Tools for Developing Deno Applications

One of the distinctive features that sets Deno apart from its popular pre-
decessor, Node.js, is the inclusion of a set of built - in utilities to enhance
developers’ productivity. These utilities ensure that code remains clean,
consistent, and easy to maintain, allowing you to focus on writing the actual
logic of your application.

Let’s now dive into Deno’s primary built - in tools, linting, formatting,
bundling, and testing, and understand how they can elevate our development
workflow.

- lint: Recognize the importance of writing clean and maintainable code
early on in your Deno journey. The ‘deno lint‘ command is provided out of
the box to help you achieve just that. It analyzes your code for potential
errors, pointing out risky constructs, anti - patterns, and even stylistic issues
that could harm the readability and maintainability of your projects. A
powerful example is the ‘ - - unstable‘ flag, which allows you to stay on the
cutting edge and be informed of new linting rules coming in future Deno
updates.

- fmt: Consistent formatting of your code is essential for an enjoyable
and efficient development experience. Thankfully, Deno includes a powerful
formatter called ‘deno fmt‘ that automatically takes care of keeping your
codebase clean and consistent. With a simple command, ‘deno fmt‘ scans
your TypeScript files and applies a unified format, making it substantially
easier to read and understand for you and your fellow developers.

- bundle: Deno has exceptional support for modern code bundling
techniques, allowing you to optimize your application for performance and
portability. The ‘deno bundle‘ command collects and compiles all your
TypeScript code, its dependencies, and the required polyfills into a single
compact file. With this bundle, you can deploy your Deno application
effortlessly, ensuring fast startup times and minimal overhead. This feature
allows Deno applications to be shared easily, pushed to environments with
strict network constraints, or as part of resource - limited IoT devices.

- test: Ensuring the correctness and stability of your Deno code is a
crucial aspect of the development process. The ‘deno test‘ utility is here
to help every developer adhere to the best practices of writing, executing,
and maintaining tests. Utilizing the native testing framework, you can

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

275

write both unit tests and integration tests. Deno encourages developers to
anticipate failure and adopt a test - driven development (TDD) approach,
verifying that the code behaves as intended and catching errors early in the
software lifecycle.

These essential tools empower developers to focus on building high -
quality, secure, and efficient software applications while ensuring a smooth
and enjoyable development experience. By adopting the features and utilities
provided by Deno, you immerse yourself in a programming environment that
instills best practices, automatic optimizations, and seamless deployment
processes right at your fingertips.

Debugging Deno Applications

Deno ships with a built-in debugger, which is based on the Chrome DevTools
debugging protocol. This debugger is compatible with popular Integrated
Development Environments (IDEs) such as Visual Studio Code, JetBrains
WebStorm, and others. It provides a convenient debugging experience for
developers who are used to working with such tools.

The first step is to start your Deno application in debug mode. To do
this, run your Deno code using the ‘ - - inspect‘ or ‘ - - inspect - brk‘ flag
followed by the debugger port:

“‘ deno run - - inspect - brk=9229 my deno app.ts “‘
The ‘ - - inspect - brk‘ flag tells Deno to pause execution at the start of

the program, allowing you to set breakpoints and step through your code.
The ‘ - - inspect‘ flag can be used if you want to start executing your Deno
application without breaking.

Once the application is running in debug mode, you can connect your
IDE to the Deno process. Using Visual Studio Code as an example, you can
create a launch configuration file ‘.vscode/launch.json‘ with the following
settings:

“‘json { ”version”: ”0.2.0”, ”configurations”: [{ ”type”: ”deno”, ”re-
quest”: ”launch”, ”name”: ”My Deno App”, ”cwd”: ”${workspaceFolder}”,
”execArgv”: [”- -inspect-brk=9229”], ”program”: ”${workspaceFolder}/my deno app.ts”
}] } “‘

Next, set breakpoints in your code by clicking on the editor’s gutter next
to the line numbers. Once the breakpoints are in place, press F5 to begin

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

276

the debugging session. Visual Studio Code will launch your application, and
the execution will pause at the breakpoints you set. You can now navigate
your code by stepping through it, one line at a time, using the debugger
controls in your IDE.

While breakpoints are helpful for investigating specific portions of your
code, console logs can still provide valuable insights into your applica-
tion’s inner workings. The Deno global object contains a method called
‘Deno.inspect()‘ that allows for cleaner outputs in your debugging logs. For
instance, if you want to display the content of an object, you can use ‘con-
sole.log(Deno.inspect(obj))‘, and Deno will output a readable representation
of the object in the console.

Another noteworthy feature to aid in debugging Deno applications is
the stack trace. When your application encounters an error, Deno generates
a stack trace to help identify the issue’s origin. This output shows the
function calls that led to the error and their respective locations in your
code. By carefully analyzing the stack trace, you can often pinpoint the
source of an issue and proceed to fix it.

One critical aspect of debugging any application, including those built
with Deno, is ensuring that your code is tested thoroughly. Writing compre-
hensive unit and integration tests for your application allows you to catch
bugs and regressions early on in the development process a propos enabling
you to isolate any issues that might arise.

Finally, it’s worth mentioning that the Deno ecosystem is actively evolv-
ing, and new debugging tools and techniques are on the horizon. These
technological advancements will continue to make debugging Deno applica-
tions even more seamless in the future.

To conclude, debugging is a vital aspect of any Deno developer’s tool-
box, from using the built - in debugger to developing a rigorous testing
methodology. As you delve deeper into the Deno ecosystem, you’ll find that
honing this skill results in more reliable, maintainable software applications,
ultimately making you a more valuable and effective developer.

As we transition to the next part of the outline, remember that debugging
is only one facet of the Deno universe. In the upcoming sections, you will
uncover various dimensions of Deno’s capabilities, tooling, and versatile
potential - paving the way for a robust, vibrant web development experience.

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

277

Continuous Integration (CI) and Continuous Deploy-
ment (CD) for Deno Projects

Continuous integration is the practice of frequently merging code changes
into a shared main branch, with an emphasis on automated testing and
validation. CI is exceptionally beneficial in reducing the complexity of large
- scale merging by encouraging small, incremental changes, which ultimately
leads to improved code quality and enhanced collaboration among team
members.

On the other hand, continuous deployment takes CI a step further by
automating the process of deploying new changes to a production envi-
ronment. With CD, every code change that passes the testing phase is
automatically deployed to production so that new features and fixes are
instantly available to end - users. Combined with continuous integration, it
ensures that an application remains stable and production-ready throughout
the development lifecycle.

CI/CD Tools and Services -
- - - Several tools and services support CI/CD for Deno projects, such as
GitHub Actions, GitLab CI/CD, and CircleCI. Choosing the appropriate
tool for your project will depend on various factors like your team’s existing
knowledge, infrastructure requirements, and budget constraints. Each of
these tools offers similar functionality but with unique features, interfaces,
and configuration options.

Setting up CI/CD for Deno Projects -
- - - - - - - - - To set up CI/CD for a Deno project, follow these general steps:

2. Create a CI/CD workflow configuration file: In the root directory
of your project, create a .github/workflows directory to store your GitHub
Actions workflow configuration files. Inside this folder, create a new YAML
file (e.g., deno ci cd.yaml) that defines the different steps in your CI/CD
process.

3. Configure the workflow: Write the necessary CI steps in the configu-
ration file. For a Deno project, this typically includes: - Installing the Deno
runtime - Running the application tests - Checking code formatting and
linting - Bundling the application - Deploying to the target environment

For example, the following GitHub Actions configuration file installs
Deno, runs tests, checks formatting, and deploys the application to Heroku:

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

278

“‘yaml name: Deno CI/CD
on: [push]
jobs: build: runs - on: ubuntu - latest
steps: - uses: actions/checkout@v2
- name: Set up Deno uses: denolib/setup - deno@v2 with: deno - version:

v1.x
- name: Cache Deno dependencies uses: actions/cache@v2 with: path:

˜/.deno key: ${{ runner.os }} - deno - ${{ hashFiles(’**/lock.json’) }}
- name: Run tests run: deno test - - allow - net - - allow - read
- name: Check formatting run: deno fmt - - check
- name: Deploy to Heroku if: github.ref == ’refs/heads/main’ run:

git remote add heroku https://heroku:${{ secrets.HEROKU API KEY
}}@git.heroku.com/${{ secrets.HEROKU APP NAME }}.git git push heroku
HEAD:refs/heads/main “‘

4. Test the workflow: Commit the configuration file and push the
changes to the main branch. This will trigger the CI/CD process, and you
can monitor the progress and results from your CI/CD tool’s dashboard.

5. fine - tune and adjust the workflow as necessary.
As your Deno project evolves, you can extend the CI/CD pipeline with

additional steps like automated performance testing, security scanning, or
compatibility testing with different server environments.

Implementing CI/CD practices for Deno projects brings a sense of
stability, reliability, and confidence within your development team. It
guarantees that code changes will flow through a consistent and controlled
process, resulting in reduced deployment risks and an automated error -
detection mechanism. Ultimately, a well - tuned CI/CD pipeline forms
the backbone of a thriving Deno project, allowing your team to focus on
creativity and innovation while the pipeline ensures that the application
remains stable and production - ready at all times.

Adopting Deno in Large - scale Projects

A significant aspect of Deno adoption is understanding its differences from
the Node.js ecosystem, and planning for the integration of these changes
within the context of your organization’s application architecture. Deno’s
import/export syntax favors ES modules over CommonJS, its global object

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

279

is ‘Deno‘ instead of ‘global‘, and certain Node - specific functions are not
available.

When planning to convert an existing JavaScript application to Deno, an
incremental approach can be highly beneficial. Start by identifying the parts
of the application that can be easily ported to Deno, perhaps focusing on
utility functions or areas where TypeScript would provide a clear advantage.
Utilize feature flags to create a ”fallback” mechanism that allows the code
to switch between the Node and Deno implementation until the migration
is complete.

This gradual conversion can also be combined with parallel development
for new features, ensuring that new modules are written using Deno. During
the migration, it may also be necessary to refactor some of the legacy code
to adopt ES modules and other Deno - specific conventions. Therein lies an
opportunity to improve code quality and reduce technical debt, embracing
clean coding practices, modular architecture, and type safety.

In addition to converting existing code, teams may also consider a
hybrid approach, which leverages both Deno and Node.js simultaneously.
Hybrid applications can take advantage of Deno’s unique features for certain
parts of the codebase, while retaining existing Node.js infrastructure and
modules where needed. To achieve a successful hybrid solution, it is crucial
to establish a strong contract for communication between the Deno and
Node.js portions of the application, such as using message queues, REST
APIs, or gRPC.

As with any technology stack transition, adopting Deno in large - scale
projects requires a thoughtful approach to team preparation and training.
Ensure that all developers are on board with the decision to adopt Deno
and are ready to learn TypeScript if they are not already familiar with the
language. Allocate time for training sessions and provide ample resources,
such as documentation, guides, and sample projects that demonstrate best
practices and how to navigate common pitfalls.

A successful Deno adoption hinges on considering the ecosystem of tools
and libraries that make up a modern software project. It is essential to
assess the compatibility of existing third - party libraries or Node.js modules
with Deno and identify suitable replacements or customizations if needed.
Developers should commit to Deno’s security - centric permission model to
protect against potential threats and vulnerabilities, integrating it into the

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

280

organizational culture and practices.
As the dust settles on the Deno migration, reinforcing best practices

and optimizing workflow becomes paramount. It is crucial to establish an
efficient workflow incorporating linting, formatting, and hot - reloading, in
addition to harnessing Deno’s native tools like ‘deno fmt‘ and ‘deno lint‘.
Furthermore, evaluate and refine new or updated project structures to cater
to the newfound setup.

Interacting with Databases in Deno Applications

Interacting with databases is a fundamental aspect of many Deno applica-
tions, as data storage, retrieval, and manipulation play a critical role in
powering dynamic and interactive web services. The Deno ecosystem offers
a diverse range of libraries and solutions for connecting to various databases,
enabling developers to build applications that can communicate effectively
with these data stores.

To illustrate the process of interacting with databases in Deno applica-
tions, let’s explore examples and best practices for working with some of the
most popular databases, including relational databases (such as PostgreSQL
and MySQL) and NoSQL databases (such as MongoDB).

PostgreSQL is an advanced, enterprise - class, and highly versatile re-
lational database system. It provides a multitude of powerful features for
developers to leverage, including out - of - the - box support for full - text
search, geographic data, and advanced query capabilities.

Interacting with PostgreSQL from a Deno application can be achieved
using the ‘deno - postgres‘ library, which is a modern and easy - to - use
solution that leverages the native Deno APIs without the need for external
dependencies. To get started, simply import the ‘Client‘ class from the
library:

“‘typescript import { Client } from ”https://deno.land/x/postgres/mod.ts”;
“‘

Next, create a new client instance and configure the connection parame-
ters to match your PostgreSQL server and database credentials:

“‘typescript const client = new Client({ host: ”your-db-server.example.com”,
port: 5432, user: ”your db user”, password: ”your db password”, database:
”your db name”, });

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

281

await client.connect(); “‘
Once connected, you can perform various operations, such as querying

data, creating tables, and inserting new records. For example, you can fetch
a list of users:

“‘typescript const result = await client.queryArray(”SELECT * FROM
users”); console.log(result.rows); “‘

MySQL, another popular relational database, can be similarly accessed
in Deno applications using the ‘deno mysql‘ library. To use it, you would
need to import the ‘Client‘ class in a similar fashion:

“‘typescript import { Client } from ”https://deno.land/x/mysql/mod.ts”;
“‘

Setting up a connection and performing database operations with MySQL
is almost identical to working with PostgreSQL:

“‘typescript const client = await new Client().connect({ hostname: ”your
- db - server.example.com”, port: 3306, username: ”your db user”, password:
”your db password”, db: ”your db name”, });

const result = await client.query(”SELECT * FROM users”); con-
sole.log(result.rows); “‘

In addition to relational databases like PostgreSQL and MySQL, many
developers turn to NoSQL databases for their flexibility and ease of use
with schema - less data storage. MongoDB, one of the most ubiquitous
NoSQL databases, can be easily integrated into a Deno application using
the ‘deno mongo‘ library:

“‘typescript import { MongoClient } from ”https://deno.land/x/mongo/mod.ts”;
“‘

Connecting to a MongoDB server and performing database operations
is straightforward:

“‘typescript const client = new MongoClient(); client.connectWithUri(”mongodb://your
- mongodb - server.example.com”);

const database = client.database(”your db name”); const users = database.collection(”users”);
const result = await users.find(); console.log(result); “‘
These examples demonstrate the simplicity and flexibility of integrating

various databases into Deno applications using native TypeScript libraries.
However, it is important to bear in mind the following best practices when
interacting with databases in your Deno projects:

1. Use a connection pool to manage database connections and efficiently

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

282

handle multiple concurrent requests. 2. Sanitize user inputs and validate
data before running queries to prevent SQL injection attacks and ensure
data integrity. 3. Optimize queries for best performance, utilizing database
indexes and query planning tools. 4. Employ a consistent error handling
strategy to catch and handle database - related errors gracefully. 5. Consider
using an Object - Relational Mapping (ORM) library, like DenoDB, to
abstract database operations and ensure application logic remains clean and
maintainable.

As the Deno ecosystem continues to mature, the choices and capabilities
for interacting with databases will undoubtedly expand, enabling developers
to create even more robust and powerful applications. By incorporating
these best practices and leveraging the diverse range of libraries and solutions
available, Deno developers can confidently build data - driven applications
that effectively bridge the gap between code and data storage.

Given the vibrant and ever-growing Deno ecosystem, innovative solutions
are constantly emerging. As you continue to explore the myriad of libraries
and tools available in Deno, remember that everything is interconnected
in the web of technology. The skills you develop while working with Deno
applications and databases will undoubtedly serve as a solid foundation for
mastering the challenges and opportunities you encounter in the broader
world of web development. With this vast ocean of knowledge before you,
cherish the journey as you navigate the constantly evolving landscape of
application development with Deno and TypeScript.

Machine Learning and Artificial Intelligence (AI) with
Deno and TypeScript

As an application developer, the importance of incorporating AI and machine
learning in your projects cannot be overstated. It enables you to create
intelligent applications that not only solve complex business problems but
also provide intuitive interactions for your users. With the advent of Deno
and TypeScript, leveraging powerful AI and Machine Learning techniques
has become easier, allowing you to build state - of - the - art applications that
leverage these cutting - edge technologies.

First, let’s discuss the popular machine learning and AI libraries that
can be used in Deno applications. Notable libraries include TensorFlow.js,

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

283

Brain.js, and Natural. TensorFlow.js is an open - source library developed by
Google that enables machine learning models to run directly in the browser,
Node.js, and now, Deno as well. Brain.js is a simplified neural network
library primarily aimed at developers new to machine learning. Natural, on
the other hand, is focused on providing natural language processing features
with a wide array of functionalities, such as tokenization, stemming, and
classification.

When incorporating these libraries into Deno applications, we must
carefully consider their compatibility and performance. Some libraries might
require browser APIs or Node.js - specific functionality, which might not
be available in the Deno runtime. Therefore, it is essential to review each
library’s documentation and ensure it can be integrated with a Deno project.

After choosing a suitable library, we can proceed to integrate machine
learning models and AI features into our application. A common example
would be sentiment analysis, where a user inputs a message, and the appli-
cation can determine the sentiment behind it, whether positive, negative,
or neutral. To implement sentiment analysis, we can leverage the Natural
library’s vast array of natural language processing functions.

First, we can start by defining our input and output types in TypeScript,
ensuring strong typing throughout our implementation. We will create
interfaces representing the user message and analyzed sentiment, along with
utility functions to handle text pre - processing. With a strong foundation
in place, we can begin implementing our sentiment analysis logic using
Natural’s suite of features.

For instance, we can tokenize the user’s message, remove stopwords, and
then stem the words to their root forms. Next, we can create a Naive Bayes
classifier to classify the message based on previously labeled data. With a
well - trained classifier, we can then input the processed message and obtain
its sentiment as output. This process would enable our users to analyze text
and drive meaningful insights, leading to better decision - making.

Another common scenario involving machine learning in Deno appli-
cations is image recognition. By implementing image recognition, we can
create applications that detect objects within images or automatically clas-
sify images based on their content. This functionality can add immense
value across various industries, such as healthcare, security, and e-commerce.
To implement image recognition, we can utilize TensorFlow.js, which brings

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

284

powerful machine learning capabilities to our Deno applications.
After thoroughly researching and selecting appropriate pre - trained

models for image recognition, we can incorporate TensorFlow.js in our Deno
application. First, we need to import the required models and initialize
TensorFlow.js. Then, after pre - processing the image data, we can pass it
to the machine learning model and obtain predictions regarding the objects
present in the image. The resulting prediction can be processed and returned
as a neatly formatted output to the user.

Bear in mind that implementing machine learning models in a Deno
application could be affected by factors such as computational resources,
latency, and security concerns. We need to ensure that our Deno applications
are optimized for performance and can handle the resource - intensive nature
of some machine learning tasks.

In conclusion, leveraging the power of AI and machine learning in
Deno applications opens up a world of new possibilities and enhanced
user experiences. Although there are challenges in integrating machine
learning libraries and managing computational resources, Deno, coupled
with TypeScript, offers a strong platform for creating innovative applications
that harness the potential of machine learning and AI. As we journey
forward, the expansion of the Deno ecosystem, together with the continuous
advancements in AI and machine learning technologies, will indefinitely
broaden the horizon of possibilities in creating much more seamless and
intelligent web applications.

Performance Analysis and Optimization of Deno Appli-
cations

The heart of all performance analysis is profiling. Profiling involves moni-
toring software applications to identify performance bottlenecks, inefficient
code, and resource usage. In Deno, there are several ways to profile your
applications to gather data for analysis and optimization.

The first technique is the built - in Deno profiler. The profiler is part of
the core Deno runtime and provides insights into the execution of JavaScript
and TypeScript code in Deno applications. This profiler helps to identify
resource - intensive functions or code paths that can be optimized. To use
the built - in Deno profiler, you can simply add the ‘ - - inspect‘ or ‘ - - inspect

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

285

- brk‘ flags when running your Deno application, allowing you to connect to
the inspector using a debugging tool such as Chrome DevTools.

Another approach to performance analysis is using third - party profiling
tools that support the Deno runtime. For example, tools like FlameScope or
Clinic.js can parse the output from the Deno profiler to visualize and analyze
the performance data. Furthermore, these tools provide additional capa-
bilities, like capturing CPU profiles, analyzing memory usage, or tracking
asynchronous activities in your application.

With performance data at hand, it’s time to dive into optimization
strategies. One critical aspect of optimization is reducing the amount of
code that needs to be executed. This can be achieved through techniques
such as dead code elimination, minification, and tree - shaking, which remove
unnecessary or redundant code fragments. Deno’s built - in bundling tool
can help in this regard, as it effectively compiles and bundles your modules
into a single optimized output.

A further area of optimization in Deno applications is optimizing asyn-
chronous code. Deno makes extensive use of async/await and promises
to manage asynchronous operations. Ensuring that your promises are
efficiently handled and not excessively awaiting can greatly impact your
application’s performance. Consider using Deno - provided utilities, such as
‘Deno.readAll()‘ and ‘Deno.writeAll()‘, which make reading and writing data
more efficient by avoiding unnecessary await calls and minimizing resource
usage.

Efficient resource management is another crucial aspect of Deno opti-
mization. Ensure that file descriptors, sockets, and subprocesses are always
properly closed to avoid resource leaks. You can use the ‘Deno.resources()‘
function to retrieve a list of all currently open resources, helping you identify
potential leaks in your application.

Optimizing network interactions is also a significant aspect of Deno
applications’ performance. Analyzing and optimizing the performance of
HTTP and WebSocket communication is crucial for providing a responsive
user experience. A useful technique involves caching and memoization, which
minimizes the number of requests made to an external source, significantly
reducing network overhead and latency. Deno’s Fetch API, modeled after
the browser Fetch API, makes it easier to cache and optimize network
requests using built - in caching strategies.

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

286

To truly improve the performance of Deno applications, remember to op-
timize your TypeScript code as well. As Deno natively supports TypeScript,
it’s crucial to understand how TypeScript features can impact performance.
This includes utilizing advanced TypeScript types and utility functions,
optimizing type - checking, and leveraging compiler options for better code
generation.

In an ever - evolving web landscape, the role of Deno and TypeScript in
fostering efficient, secure, and performant applications is paramount. While
Deno’s built - in tools enable basic performance analysis and optimization,
combining them with third - party tools and creative techniques can provide
a significant edge in building highly efficient applications. The key is to be
vigilant, regularly profile your code, and iteratively apply optimizations to
achieve the best possible performance.

Future Developments in Deno and TypeScript

As engineers embark on the exciting journey of adopting Deno and Type-
Script for their web applications, it is important to acknowledge the ever -
evolving landscape of these technologies. In harmony with the traditions
of the web community, Deno and TypeScript will continue to embrace new
features, improvements, and optimizations, shaping the path forward for
developers.

One of the key areas of future development in Deno is the stability and
improvements of the runtime’s Web API compatibility. As the Web API
has been traditionally confined to front - end development, ensuring seamless
integration of these APIs in Deno strengthens the bridge between front -
end and back - end development. In the era of WebAssembly and Service
Workers, the coverage of Web API in Deno can open up the possibilities
for developers to create truly innovative applications that leverage the full
potential of the web ecosystem.

In addition, the Deno team is working vigilantly on the performance
optimization of the runtime. The progress in this area will not only substan-
tially decrease the time it takes to develop and test applications, but it will
also expand the horizons as to what a Deno application can achieve. Perfor-
mance enhancement techniques, such as the introduction of better garbage
collection algorithms and improved runtime optimizations for JavaScript

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

287

and TypeScript execution, will propel Deno to unprecedented levels of
applications’ performance.

Another pivotal development in the Deno ecosystem is the continued
growth and support for third - party libraries and packages. Deno’s future
will largely depend on the contributions of the community and how devel-
opers adopt, adapt, and contribute libraries and packages compatible with
Deno. As the ecosystem flourishes and more libraries become available, the
transition from Node.js to Deno will become seamless for a larger number
of developers, thereby bolstering the widespread acceptance of Deno in the
community.

At the core of Deno’s relationship with TypeScript lies the notion of
leveraging the power of static typing. We anticipate that TypeScript will
continue to enhance its type - checking capabilities and refine the ergonomics
of type annotations. In the same vein, the development of advanced type
manipulation utilities, assertions, and type guards will solidify TypeScript’s
position as an indispensable tool in the Deno ecosystem.

Furthermore, the introduction and utilization of novel language features
in TypeScript, such as type - level programming capabilities, declarative
metaprogramming, or pattern matching, will provide developers with even
more powerful constructs to optimize their code. As the adoption of sophis-
ticated language features strengthens, the Deno and TypeScript community
can develop creative solutions to complex problems, allowing for more
expressive and powerful applications.

Lastly, one of the significant challenges in the Deno ecosystem is the
process of deployment, especially in cloud environments. As more developers
embrace Deno, the pressure on cloud providers to introduce first - class
support for Deno deployment and tooling will amplify. The future of Deno in
cloud platforms will be shaped by how swiftly the cloud providers integrate
support for Deno, including offering managed services, pre - configured
environments, and a set of best practices for deploying and scaling Deno
applications.

Inevitably, the journey of Deno and TypeScript is intertwined with the
broader narrative of modern web development. As disruptive forces continue
to emerge, it will be instrumental for these technologies to embrace and
adapt to the changes in the ecosystem. While the future might seem riddled
with challenges, the potential for Deno and TypeScript to serve as the

CHAPTER 14. DENO ECOSYSTEM, TOOLING, AND FUTURE DEVELOP-
MENTS IN DENO AND TYPESCRIPT

288

vanguard of web development is immense.
As edge computing becomes more popular, and technologies such as

IoT and 5G networks gain ground, the importance of efficient, secure, and
versatile runtimes like Deno will be even more evident. By maintaining
a nimble, forward - looking mindset, Deno and TypeScript can preserve
their relevance in the face of massive change while offering solutions to
evolve alongside the web. One thing is certain: the confluence of Deno and
TypeScript will continue to push the boundaries of what we dream and
create within the realm of web development.

